Metamath Proof Explorer


Theorem bnj1286

Description: Technical lemma for bnj60 . This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (New usage is discouraged.)

Ref Expression
Hypotheses bnj1286.1 𝐵 = { 𝑑 ∣ ( 𝑑𝐴 ∧ ∀ 𝑥𝑑 pred ( 𝑥 , 𝐴 , 𝑅 ) ⊆ 𝑑 ) }
bnj1286.2 𝑌 = ⟨ 𝑥 , ( 𝑓 ↾ pred ( 𝑥 , 𝐴 , 𝑅 ) ) ⟩
bnj1286.3 𝐶 = { 𝑓 ∣ ∃ 𝑑𝐵 ( 𝑓 Fn 𝑑 ∧ ∀ 𝑥𝑑 ( 𝑓𝑥 ) = ( 𝐺𝑌 ) ) }
bnj1286.4 𝐷 = ( dom 𝑔 ∩ dom )
bnj1286.5 𝐸 = { 𝑥𝐷 ∣ ( 𝑔𝑥 ) ≠ ( 𝑥 ) }
bnj1286.6 ( 𝜑 ↔ ( 𝑅 FrSe 𝐴𝑔𝐶𝐶 ∧ ( 𝑔𝐷 ) ≠ ( 𝐷 ) ) )
bnj1286.7 ( 𝜓 ↔ ( 𝜑𝑥𝐸 ∧ ∀ 𝑦𝐸 ¬ 𝑦 𝑅 𝑥 ) )
Assertion bnj1286 ( 𝜓 → pred ( 𝑥 , 𝐴 , 𝑅 ) ⊆ 𝐷 )

Proof

Step Hyp Ref Expression
1 bnj1286.1 𝐵 = { 𝑑 ∣ ( 𝑑𝐴 ∧ ∀ 𝑥𝑑 pred ( 𝑥 , 𝐴 , 𝑅 ) ⊆ 𝑑 ) }
2 bnj1286.2 𝑌 = ⟨ 𝑥 , ( 𝑓 ↾ pred ( 𝑥 , 𝐴 , 𝑅 ) ) ⟩
3 bnj1286.3 𝐶 = { 𝑓 ∣ ∃ 𝑑𝐵 ( 𝑓 Fn 𝑑 ∧ ∀ 𝑥𝑑 ( 𝑓𝑥 ) = ( 𝐺𝑌 ) ) }
4 bnj1286.4 𝐷 = ( dom 𝑔 ∩ dom )
5 bnj1286.5 𝐸 = { 𝑥𝐷 ∣ ( 𝑔𝑥 ) ≠ ( 𝑥 ) }
6 bnj1286.6 ( 𝜑 ↔ ( 𝑅 FrSe 𝐴𝑔𝐶𝐶 ∧ ( 𝑔𝐷 ) ≠ ( 𝐷 ) ) )
7 bnj1286.7 ( 𝜓 ↔ ( 𝜑𝑥𝐸 ∧ ∀ 𝑦𝐸 ¬ 𝑦 𝑅 𝑥 ) )
8 1 2 3 4 5 6 7 bnj1256 ( 𝜑 → ∃ 𝑑𝐵 𝑔 Fn 𝑑 )
9 8 bnj1196 ( 𝜑 → ∃ 𝑑 ( 𝑑𝐵𝑔 Fn 𝑑 ) )
10 1 bnj1517 ( 𝑑𝐵 → ∀ 𝑥𝑑 pred ( 𝑥 , 𝐴 , 𝑅 ) ⊆ 𝑑 )
11 10 adantr ( ( 𝑑𝐵𝑔 Fn 𝑑 ) → ∀ 𝑥𝑑 pred ( 𝑥 , 𝐴 , 𝑅 ) ⊆ 𝑑 )
12 fndm ( 𝑔 Fn 𝑑 → dom 𝑔 = 𝑑 )
13 sseq2 ( dom 𝑔 = 𝑑 → ( pred ( 𝑥 , 𝐴 , 𝑅 ) ⊆ dom 𝑔 ↔ pred ( 𝑥 , 𝐴 , 𝑅 ) ⊆ 𝑑 ) )
14 13 raleqbi1dv ( dom 𝑔 = 𝑑 → ( ∀ 𝑥 ∈ dom 𝑔 pred ( 𝑥 , 𝐴 , 𝑅 ) ⊆ dom 𝑔 ↔ ∀ 𝑥𝑑 pred ( 𝑥 , 𝐴 , 𝑅 ) ⊆ 𝑑 ) )
15 12 14 syl ( 𝑔 Fn 𝑑 → ( ∀ 𝑥 ∈ dom 𝑔 pred ( 𝑥 , 𝐴 , 𝑅 ) ⊆ dom 𝑔 ↔ ∀ 𝑥𝑑 pred ( 𝑥 , 𝐴 , 𝑅 ) ⊆ 𝑑 ) )
16 15 adantl ( ( 𝑑𝐵𝑔 Fn 𝑑 ) → ( ∀ 𝑥 ∈ dom 𝑔 pred ( 𝑥 , 𝐴 , 𝑅 ) ⊆ dom 𝑔 ↔ ∀ 𝑥𝑑 pred ( 𝑥 , 𝐴 , 𝑅 ) ⊆ 𝑑 ) )
17 11 16 mpbird ( ( 𝑑𝐵𝑔 Fn 𝑑 ) → ∀ 𝑥 ∈ dom 𝑔 pred ( 𝑥 , 𝐴 , 𝑅 ) ⊆ dom 𝑔 )
18 9 17 bnj593 ( 𝜑 → ∃ 𝑑𝑥 ∈ dom 𝑔 pred ( 𝑥 , 𝐴 , 𝑅 ) ⊆ dom 𝑔 )
19 18 bnj937 ( 𝜑 → ∀ 𝑥 ∈ dom 𝑔 pred ( 𝑥 , 𝐴 , 𝑅 ) ⊆ dom 𝑔 )
20 7 19 bnj835 ( 𝜓 → ∀ 𝑥 ∈ dom 𝑔 pred ( 𝑥 , 𝐴 , 𝑅 ) ⊆ dom 𝑔 )
21 5 ssrab3 𝐸𝐷
22 4 bnj1292 𝐷 ⊆ dom 𝑔
23 21 22 sstri 𝐸 ⊆ dom 𝑔
24 23 sseli ( 𝑥𝐸𝑥 ∈ dom 𝑔 )
25 7 24 bnj836 ( 𝜓𝑥 ∈ dom 𝑔 )
26 20 25 bnj1294 ( 𝜓 → pred ( 𝑥 , 𝐴 , 𝑅 ) ⊆ dom 𝑔 )
27 1 2 3 4 5 6 7 bnj1259 ( 𝜑 → ∃ 𝑑𝐵 Fn 𝑑 )
28 27 bnj1196 ( 𝜑 → ∃ 𝑑 ( 𝑑𝐵 Fn 𝑑 ) )
29 10 adantr ( ( 𝑑𝐵 Fn 𝑑 ) → ∀ 𝑥𝑑 pred ( 𝑥 , 𝐴 , 𝑅 ) ⊆ 𝑑 )
30 fndm ( Fn 𝑑 → dom = 𝑑 )
31 sseq2 ( dom = 𝑑 → ( pred ( 𝑥 , 𝐴 , 𝑅 ) ⊆ dom ↔ pred ( 𝑥 , 𝐴 , 𝑅 ) ⊆ 𝑑 ) )
32 31 raleqbi1dv ( dom = 𝑑 → ( ∀ 𝑥 ∈ dom pred ( 𝑥 , 𝐴 , 𝑅 ) ⊆ dom ↔ ∀ 𝑥𝑑 pred ( 𝑥 , 𝐴 , 𝑅 ) ⊆ 𝑑 ) )
33 30 32 syl ( Fn 𝑑 → ( ∀ 𝑥 ∈ dom pred ( 𝑥 , 𝐴 , 𝑅 ) ⊆ dom ↔ ∀ 𝑥𝑑 pred ( 𝑥 , 𝐴 , 𝑅 ) ⊆ 𝑑 ) )
34 33 adantl ( ( 𝑑𝐵 Fn 𝑑 ) → ( ∀ 𝑥 ∈ dom pred ( 𝑥 , 𝐴 , 𝑅 ) ⊆ dom ↔ ∀ 𝑥𝑑 pred ( 𝑥 , 𝐴 , 𝑅 ) ⊆ 𝑑 ) )
35 29 34 mpbird ( ( 𝑑𝐵 Fn 𝑑 ) → ∀ 𝑥 ∈ dom pred ( 𝑥 , 𝐴 , 𝑅 ) ⊆ dom )
36 28 35 bnj593 ( 𝜑 → ∃ 𝑑𝑥 ∈ dom pred ( 𝑥 , 𝐴 , 𝑅 ) ⊆ dom )
37 36 bnj937 ( 𝜑 → ∀ 𝑥 ∈ dom pred ( 𝑥 , 𝐴 , 𝑅 ) ⊆ dom )
38 7 37 bnj835 ( 𝜓 → ∀ 𝑥 ∈ dom pred ( 𝑥 , 𝐴 , 𝑅 ) ⊆ dom )
39 4 bnj1293 𝐷 ⊆ dom
40 21 39 sstri 𝐸 ⊆ dom
41 40 sseli ( 𝑥𝐸𝑥 ∈ dom )
42 7 41 bnj836 ( 𝜓𝑥 ∈ dom )
43 38 42 bnj1294 ( 𝜓 → pred ( 𝑥 , 𝐴 , 𝑅 ) ⊆ dom )
44 26 43 ssind ( 𝜓 → pred ( 𝑥 , 𝐴 , 𝑅 ) ⊆ ( dom 𝑔 ∩ dom ) )
45 44 4 sseqtrrdi ( 𝜓 → pred ( 𝑥 , 𝐴 , 𝑅 ) ⊆ 𝐷 )