Step |
Hyp |
Ref |
Expression |
1 |
|
bnj1296.1 |
⊢ 𝐵 = { 𝑑 ∣ ( 𝑑 ⊆ 𝐴 ∧ ∀ 𝑥 ∈ 𝑑 pred ( 𝑥 , 𝐴 , 𝑅 ) ⊆ 𝑑 ) } |
2 |
|
bnj1296.2 |
⊢ 𝑌 = 〈 𝑥 , ( 𝑓 ↾ pred ( 𝑥 , 𝐴 , 𝑅 ) ) 〉 |
3 |
|
bnj1296.3 |
⊢ 𝐶 = { 𝑓 ∣ ∃ 𝑑 ∈ 𝐵 ( 𝑓 Fn 𝑑 ∧ ∀ 𝑥 ∈ 𝑑 ( 𝑓 ‘ 𝑥 ) = ( 𝐺 ‘ 𝑌 ) ) } |
4 |
|
bnj1296.4 |
⊢ 𝐷 = ( dom 𝑔 ∩ dom ℎ ) |
5 |
|
bnj1296.5 |
⊢ 𝐸 = { 𝑥 ∈ 𝐷 ∣ ( 𝑔 ‘ 𝑥 ) ≠ ( ℎ ‘ 𝑥 ) } |
6 |
|
bnj1296.6 |
⊢ ( 𝜑 ↔ ( 𝑅 FrSe 𝐴 ∧ 𝑔 ∈ 𝐶 ∧ ℎ ∈ 𝐶 ∧ ( 𝑔 ↾ 𝐷 ) ≠ ( ℎ ↾ 𝐷 ) ) ) |
7 |
|
bnj1296.7 |
⊢ ( 𝜓 ↔ ( 𝜑 ∧ 𝑥 ∈ 𝐸 ∧ ∀ 𝑦 ∈ 𝐸 ¬ 𝑦 𝑅 𝑥 ) ) |
8 |
|
bnj1296.18 |
⊢ ( 𝜓 → ( 𝑔 ↾ pred ( 𝑥 , 𝐴 , 𝑅 ) ) = ( ℎ ↾ pred ( 𝑥 , 𝐴 , 𝑅 ) ) ) |
9 |
|
bnj1296.9 |
⊢ 𝑍 = 〈 𝑥 , ( 𝑔 ↾ pred ( 𝑥 , 𝐴 , 𝑅 ) ) 〉 |
10 |
|
bnj1296.10 |
⊢ 𝐾 = { 𝑔 ∣ ∃ 𝑑 ∈ 𝐵 ( 𝑔 Fn 𝑑 ∧ ∀ 𝑥 ∈ 𝑑 ( 𝑔 ‘ 𝑥 ) = ( 𝐺 ‘ 𝑍 ) ) } |
11 |
|
bnj1296.11 |
⊢ 𝑊 = 〈 𝑥 , ( ℎ ↾ pred ( 𝑥 , 𝐴 , 𝑅 ) ) 〉 |
12 |
|
bnj1296.12 |
⊢ 𝐿 = { ℎ ∣ ∃ 𝑑 ∈ 𝐵 ( ℎ Fn 𝑑 ∧ ∀ 𝑥 ∈ 𝑑 ( ℎ ‘ 𝑥 ) = ( 𝐺 ‘ 𝑊 ) ) } |
13 |
8
|
opeq2d |
⊢ ( 𝜓 → 〈 𝑥 , ( 𝑔 ↾ pred ( 𝑥 , 𝐴 , 𝑅 ) ) 〉 = 〈 𝑥 , ( ℎ ↾ pred ( 𝑥 , 𝐴 , 𝑅 ) ) 〉 ) |
14 |
13 9 11
|
3eqtr4g |
⊢ ( 𝜓 → 𝑍 = 𝑊 ) |
15 |
14
|
fveq2d |
⊢ ( 𝜓 → ( 𝐺 ‘ 𝑍 ) = ( 𝐺 ‘ 𝑊 ) ) |
16 |
10
|
bnj1436 |
⊢ ( 𝑔 ∈ 𝐾 → ∃ 𝑑 ∈ 𝐵 ( 𝑔 Fn 𝑑 ∧ ∀ 𝑥 ∈ 𝑑 ( 𝑔 ‘ 𝑥 ) = ( 𝐺 ‘ 𝑍 ) ) ) |
17 |
|
fndm |
⊢ ( 𝑔 Fn 𝑑 → dom 𝑔 = 𝑑 ) |
18 |
17
|
anim1i |
⊢ ( ( 𝑔 Fn 𝑑 ∧ ∀ 𝑥 ∈ 𝑑 ( 𝑔 ‘ 𝑥 ) = ( 𝐺 ‘ 𝑍 ) ) → ( dom 𝑔 = 𝑑 ∧ ∀ 𝑥 ∈ 𝑑 ( 𝑔 ‘ 𝑥 ) = ( 𝐺 ‘ 𝑍 ) ) ) |
19 |
16 18
|
bnj31 |
⊢ ( 𝑔 ∈ 𝐾 → ∃ 𝑑 ∈ 𝐵 ( dom 𝑔 = 𝑑 ∧ ∀ 𝑥 ∈ 𝑑 ( 𝑔 ‘ 𝑥 ) = ( 𝐺 ‘ 𝑍 ) ) ) |
20 |
|
raleq |
⊢ ( dom 𝑔 = 𝑑 → ( ∀ 𝑥 ∈ dom 𝑔 ( 𝑔 ‘ 𝑥 ) = ( 𝐺 ‘ 𝑍 ) ↔ ∀ 𝑥 ∈ 𝑑 ( 𝑔 ‘ 𝑥 ) = ( 𝐺 ‘ 𝑍 ) ) ) |
21 |
20
|
pm5.32i |
⊢ ( ( dom 𝑔 = 𝑑 ∧ ∀ 𝑥 ∈ dom 𝑔 ( 𝑔 ‘ 𝑥 ) = ( 𝐺 ‘ 𝑍 ) ) ↔ ( dom 𝑔 = 𝑑 ∧ ∀ 𝑥 ∈ 𝑑 ( 𝑔 ‘ 𝑥 ) = ( 𝐺 ‘ 𝑍 ) ) ) |
22 |
21
|
rexbii |
⊢ ( ∃ 𝑑 ∈ 𝐵 ( dom 𝑔 = 𝑑 ∧ ∀ 𝑥 ∈ dom 𝑔 ( 𝑔 ‘ 𝑥 ) = ( 𝐺 ‘ 𝑍 ) ) ↔ ∃ 𝑑 ∈ 𝐵 ( dom 𝑔 = 𝑑 ∧ ∀ 𝑥 ∈ 𝑑 ( 𝑔 ‘ 𝑥 ) = ( 𝐺 ‘ 𝑍 ) ) ) |
23 |
19 22
|
sylibr |
⊢ ( 𝑔 ∈ 𝐾 → ∃ 𝑑 ∈ 𝐵 ( dom 𝑔 = 𝑑 ∧ ∀ 𝑥 ∈ dom 𝑔 ( 𝑔 ‘ 𝑥 ) = ( 𝐺 ‘ 𝑍 ) ) ) |
24 |
|
simpr |
⊢ ( ( dom 𝑔 = 𝑑 ∧ ∀ 𝑥 ∈ dom 𝑔 ( 𝑔 ‘ 𝑥 ) = ( 𝐺 ‘ 𝑍 ) ) → ∀ 𝑥 ∈ dom 𝑔 ( 𝑔 ‘ 𝑥 ) = ( 𝐺 ‘ 𝑍 ) ) |
25 |
23 24
|
bnj31 |
⊢ ( 𝑔 ∈ 𝐾 → ∃ 𝑑 ∈ 𝐵 ∀ 𝑥 ∈ dom 𝑔 ( 𝑔 ‘ 𝑥 ) = ( 𝐺 ‘ 𝑍 ) ) |
26 |
25
|
bnj1265 |
⊢ ( 𝑔 ∈ 𝐾 → ∀ 𝑥 ∈ dom 𝑔 ( 𝑔 ‘ 𝑥 ) = ( 𝐺 ‘ 𝑍 ) ) |
27 |
2 3 9 10
|
bnj1234 |
⊢ 𝐶 = 𝐾 |
28 |
26 27
|
eleq2s |
⊢ ( 𝑔 ∈ 𝐶 → ∀ 𝑥 ∈ dom 𝑔 ( 𝑔 ‘ 𝑥 ) = ( 𝐺 ‘ 𝑍 ) ) |
29 |
6 28
|
bnj770 |
⊢ ( 𝜑 → ∀ 𝑥 ∈ dom 𝑔 ( 𝑔 ‘ 𝑥 ) = ( 𝐺 ‘ 𝑍 ) ) |
30 |
7 29
|
bnj835 |
⊢ ( 𝜓 → ∀ 𝑥 ∈ dom 𝑔 ( 𝑔 ‘ 𝑥 ) = ( 𝐺 ‘ 𝑍 ) ) |
31 |
4
|
bnj1292 |
⊢ 𝐷 ⊆ dom 𝑔 |
32 |
5 7
|
bnj1212 |
⊢ ( 𝜓 → 𝑥 ∈ 𝐷 ) |
33 |
31 32
|
bnj1213 |
⊢ ( 𝜓 → 𝑥 ∈ dom 𝑔 ) |
34 |
30 33
|
bnj1294 |
⊢ ( 𝜓 → ( 𝑔 ‘ 𝑥 ) = ( 𝐺 ‘ 𝑍 ) ) |
35 |
12
|
bnj1436 |
⊢ ( ℎ ∈ 𝐿 → ∃ 𝑑 ∈ 𝐵 ( ℎ Fn 𝑑 ∧ ∀ 𝑥 ∈ 𝑑 ( ℎ ‘ 𝑥 ) = ( 𝐺 ‘ 𝑊 ) ) ) |
36 |
|
fndm |
⊢ ( ℎ Fn 𝑑 → dom ℎ = 𝑑 ) |
37 |
36
|
anim1i |
⊢ ( ( ℎ Fn 𝑑 ∧ ∀ 𝑥 ∈ 𝑑 ( ℎ ‘ 𝑥 ) = ( 𝐺 ‘ 𝑊 ) ) → ( dom ℎ = 𝑑 ∧ ∀ 𝑥 ∈ 𝑑 ( ℎ ‘ 𝑥 ) = ( 𝐺 ‘ 𝑊 ) ) ) |
38 |
35 37
|
bnj31 |
⊢ ( ℎ ∈ 𝐿 → ∃ 𝑑 ∈ 𝐵 ( dom ℎ = 𝑑 ∧ ∀ 𝑥 ∈ 𝑑 ( ℎ ‘ 𝑥 ) = ( 𝐺 ‘ 𝑊 ) ) ) |
39 |
|
raleq |
⊢ ( dom ℎ = 𝑑 → ( ∀ 𝑥 ∈ dom ℎ ( ℎ ‘ 𝑥 ) = ( 𝐺 ‘ 𝑊 ) ↔ ∀ 𝑥 ∈ 𝑑 ( ℎ ‘ 𝑥 ) = ( 𝐺 ‘ 𝑊 ) ) ) |
40 |
39
|
pm5.32i |
⊢ ( ( dom ℎ = 𝑑 ∧ ∀ 𝑥 ∈ dom ℎ ( ℎ ‘ 𝑥 ) = ( 𝐺 ‘ 𝑊 ) ) ↔ ( dom ℎ = 𝑑 ∧ ∀ 𝑥 ∈ 𝑑 ( ℎ ‘ 𝑥 ) = ( 𝐺 ‘ 𝑊 ) ) ) |
41 |
40
|
rexbii |
⊢ ( ∃ 𝑑 ∈ 𝐵 ( dom ℎ = 𝑑 ∧ ∀ 𝑥 ∈ dom ℎ ( ℎ ‘ 𝑥 ) = ( 𝐺 ‘ 𝑊 ) ) ↔ ∃ 𝑑 ∈ 𝐵 ( dom ℎ = 𝑑 ∧ ∀ 𝑥 ∈ 𝑑 ( ℎ ‘ 𝑥 ) = ( 𝐺 ‘ 𝑊 ) ) ) |
42 |
38 41
|
sylibr |
⊢ ( ℎ ∈ 𝐿 → ∃ 𝑑 ∈ 𝐵 ( dom ℎ = 𝑑 ∧ ∀ 𝑥 ∈ dom ℎ ( ℎ ‘ 𝑥 ) = ( 𝐺 ‘ 𝑊 ) ) ) |
43 |
|
simpr |
⊢ ( ( dom ℎ = 𝑑 ∧ ∀ 𝑥 ∈ dom ℎ ( ℎ ‘ 𝑥 ) = ( 𝐺 ‘ 𝑊 ) ) → ∀ 𝑥 ∈ dom ℎ ( ℎ ‘ 𝑥 ) = ( 𝐺 ‘ 𝑊 ) ) |
44 |
42 43
|
bnj31 |
⊢ ( ℎ ∈ 𝐿 → ∃ 𝑑 ∈ 𝐵 ∀ 𝑥 ∈ dom ℎ ( ℎ ‘ 𝑥 ) = ( 𝐺 ‘ 𝑊 ) ) |
45 |
44
|
bnj1265 |
⊢ ( ℎ ∈ 𝐿 → ∀ 𝑥 ∈ dom ℎ ( ℎ ‘ 𝑥 ) = ( 𝐺 ‘ 𝑊 ) ) |
46 |
2 3 11 12
|
bnj1234 |
⊢ 𝐶 = 𝐿 |
47 |
45 46
|
eleq2s |
⊢ ( ℎ ∈ 𝐶 → ∀ 𝑥 ∈ dom ℎ ( ℎ ‘ 𝑥 ) = ( 𝐺 ‘ 𝑊 ) ) |
48 |
6 47
|
bnj771 |
⊢ ( 𝜑 → ∀ 𝑥 ∈ dom ℎ ( ℎ ‘ 𝑥 ) = ( 𝐺 ‘ 𝑊 ) ) |
49 |
7 48
|
bnj835 |
⊢ ( 𝜓 → ∀ 𝑥 ∈ dom ℎ ( ℎ ‘ 𝑥 ) = ( 𝐺 ‘ 𝑊 ) ) |
50 |
4
|
bnj1293 |
⊢ 𝐷 ⊆ dom ℎ |
51 |
50 32
|
bnj1213 |
⊢ ( 𝜓 → 𝑥 ∈ dom ℎ ) |
52 |
49 51
|
bnj1294 |
⊢ ( 𝜓 → ( ℎ ‘ 𝑥 ) = ( 𝐺 ‘ 𝑊 ) ) |
53 |
15 34 52
|
3eqtr4d |
⊢ ( 𝜓 → ( 𝑔 ‘ 𝑥 ) = ( ℎ ‘ 𝑥 ) ) |