| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							bnj1296.1 | 
							⊢ 𝐵  =  { 𝑑  ∣  ( 𝑑  ⊆  𝐴  ∧  ∀ 𝑥  ∈  𝑑  pred ( 𝑥 ,  𝐴 ,  𝑅 )  ⊆  𝑑 ) }  | 
						
						
							| 2 | 
							
								
							 | 
							bnj1296.2 | 
							⊢ 𝑌  =  〈 𝑥 ,  ( 𝑓  ↾   pred ( 𝑥 ,  𝐴 ,  𝑅 ) ) 〉  | 
						
						
							| 3 | 
							
								
							 | 
							bnj1296.3 | 
							⊢ 𝐶  =  { 𝑓  ∣  ∃ 𝑑  ∈  𝐵 ( 𝑓  Fn  𝑑  ∧  ∀ 𝑥  ∈  𝑑 ( 𝑓 ‘ 𝑥 )  =  ( 𝐺 ‘ 𝑌 ) ) }  | 
						
						
							| 4 | 
							
								
							 | 
							bnj1296.4 | 
							⊢ 𝐷  =  ( dom  𝑔  ∩  dom  ℎ )  | 
						
						
							| 5 | 
							
								
							 | 
							bnj1296.5 | 
							⊢ 𝐸  =  { 𝑥  ∈  𝐷  ∣  ( 𝑔 ‘ 𝑥 )  ≠  ( ℎ ‘ 𝑥 ) }  | 
						
						
							| 6 | 
							
								
							 | 
							bnj1296.6 | 
							⊢ ( 𝜑  ↔  ( 𝑅  FrSe  𝐴  ∧  𝑔  ∈  𝐶  ∧  ℎ  ∈  𝐶  ∧  ( 𝑔  ↾  𝐷 )  ≠  ( ℎ  ↾  𝐷 ) ) )  | 
						
						
							| 7 | 
							
								
							 | 
							bnj1296.7 | 
							⊢ ( 𝜓  ↔  ( 𝜑  ∧  𝑥  ∈  𝐸  ∧  ∀ 𝑦  ∈  𝐸 ¬  𝑦 𝑅 𝑥 ) )  | 
						
						
							| 8 | 
							
								
							 | 
							bnj1296.18 | 
							⊢ ( 𝜓  →  ( 𝑔  ↾   pred ( 𝑥 ,  𝐴 ,  𝑅 ) )  =  ( ℎ  ↾   pred ( 𝑥 ,  𝐴 ,  𝑅 ) ) )  | 
						
						
							| 9 | 
							
								
							 | 
							bnj1296.9 | 
							⊢ 𝑍  =  〈 𝑥 ,  ( 𝑔  ↾   pred ( 𝑥 ,  𝐴 ,  𝑅 ) ) 〉  | 
						
						
							| 10 | 
							
								
							 | 
							bnj1296.10 | 
							⊢ 𝐾  =  { 𝑔  ∣  ∃ 𝑑  ∈  𝐵 ( 𝑔  Fn  𝑑  ∧  ∀ 𝑥  ∈  𝑑 ( 𝑔 ‘ 𝑥 )  =  ( 𝐺 ‘ 𝑍 ) ) }  | 
						
						
							| 11 | 
							
								
							 | 
							bnj1296.11 | 
							⊢ 𝑊  =  〈 𝑥 ,  ( ℎ  ↾   pred ( 𝑥 ,  𝐴 ,  𝑅 ) ) 〉  | 
						
						
							| 12 | 
							
								
							 | 
							bnj1296.12 | 
							⊢ 𝐿  =  { ℎ  ∣  ∃ 𝑑  ∈  𝐵 ( ℎ  Fn  𝑑  ∧  ∀ 𝑥  ∈  𝑑 ( ℎ ‘ 𝑥 )  =  ( 𝐺 ‘ 𝑊 ) ) }  | 
						
						
							| 13 | 
							
								8
							 | 
							opeq2d | 
							⊢ ( 𝜓  →  〈 𝑥 ,  ( 𝑔  ↾   pred ( 𝑥 ,  𝐴 ,  𝑅 ) ) 〉  =  〈 𝑥 ,  ( ℎ  ↾   pred ( 𝑥 ,  𝐴 ,  𝑅 ) ) 〉 )  | 
						
						
							| 14 | 
							
								13 9 11
							 | 
							3eqtr4g | 
							⊢ ( 𝜓  →  𝑍  =  𝑊 )  | 
						
						
							| 15 | 
							
								14
							 | 
							fveq2d | 
							⊢ ( 𝜓  →  ( 𝐺 ‘ 𝑍 )  =  ( 𝐺 ‘ 𝑊 ) )  | 
						
						
							| 16 | 
							
								10
							 | 
							bnj1436 | 
							⊢ ( 𝑔  ∈  𝐾  →  ∃ 𝑑  ∈  𝐵 ( 𝑔  Fn  𝑑  ∧  ∀ 𝑥  ∈  𝑑 ( 𝑔 ‘ 𝑥 )  =  ( 𝐺 ‘ 𝑍 ) ) )  | 
						
						
							| 17 | 
							
								
							 | 
							fndm | 
							⊢ ( 𝑔  Fn  𝑑  →  dom  𝑔  =  𝑑 )  | 
						
						
							| 18 | 
							
								17
							 | 
							anim1i | 
							⊢ ( ( 𝑔  Fn  𝑑  ∧  ∀ 𝑥  ∈  𝑑 ( 𝑔 ‘ 𝑥 )  =  ( 𝐺 ‘ 𝑍 ) )  →  ( dom  𝑔  =  𝑑  ∧  ∀ 𝑥  ∈  𝑑 ( 𝑔 ‘ 𝑥 )  =  ( 𝐺 ‘ 𝑍 ) ) )  | 
						
						
							| 19 | 
							
								16 18
							 | 
							bnj31 | 
							⊢ ( 𝑔  ∈  𝐾  →  ∃ 𝑑  ∈  𝐵 ( dom  𝑔  =  𝑑  ∧  ∀ 𝑥  ∈  𝑑 ( 𝑔 ‘ 𝑥 )  =  ( 𝐺 ‘ 𝑍 ) ) )  | 
						
						
							| 20 | 
							
								
							 | 
							raleq | 
							⊢ ( dom  𝑔  =  𝑑  →  ( ∀ 𝑥  ∈  dom  𝑔 ( 𝑔 ‘ 𝑥 )  =  ( 𝐺 ‘ 𝑍 )  ↔  ∀ 𝑥  ∈  𝑑 ( 𝑔 ‘ 𝑥 )  =  ( 𝐺 ‘ 𝑍 ) ) )  | 
						
						
							| 21 | 
							
								20
							 | 
							pm5.32i | 
							⊢ ( ( dom  𝑔  =  𝑑  ∧  ∀ 𝑥  ∈  dom  𝑔 ( 𝑔 ‘ 𝑥 )  =  ( 𝐺 ‘ 𝑍 ) )  ↔  ( dom  𝑔  =  𝑑  ∧  ∀ 𝑥  ∈  𝑑 ( 𝑔 ‘ 𝑥 )  =  ( 𝐺 ‘ 𝑍 ) ) )  | 
						
						
							| 22 | 
							
								21
							 | 
							rexbii | 
							⊢ ( ∃ 𝑑  ∈  𝐵 ( dom  𝑔  =  𝑑  ∧  ∀ 𝑥  ∈  dom  𝑔 ( 𝑔 ‘ 𝑥 )  =  ( 𝐺 ‘ 𝑍 ) )  ↔  ∃ 𝑑  ∈  𝐵 ( dom  𝑔  =  𝑑  ∧  ∀ 𝑥  ∈  𝑑 ( 𝑔 ‘ 𝑥 )  =  ( 𝐺 ‘ 𝑍 ) ) )  | 
						
						
							| 23 | 
							
								19 22
							 | 
							sylibr | 
							⊢ ( 𝑔  ∈  𝐾  →  ∃ 𝑑  ∈  𝐵 ( dom  𝑔  =  𝑑  ∧  ∀ 𝑥  ∈  dom  𝑔 ( 𝑔 ‘ 𝑥 )  =  ( 𝐺 ‘ 𝑍 ) ) )  | 
						
						
							| 24 | 
							
								
							 | 
							simpr | 
							⊢ ( ( dom  𝑔  =  𝑑  ∧  ∀ 𝑥  ∈  dom  𝑔 ( 𝑔 ‘ 𝑥 )  =  ( 𝐺 ‘ 𝑍 ) )  →  ∀ 𝑥  ∈  dom  𝑔 ( 𝑔 ‘ 𝑥 )  =  ( 𝐺 ‘ 𝑍 ) )  | 
						
						
							| 25 | 
							
								23 24
							 | 
							bnj31 | 
							⊢ ( 𝑔  ∈  𝐾  →  ∃ 𝑑  ∈  𝐵 ∀ 𝑥  ∈  dom  𝑔 ( 𝑔 ‘ 𝑥 )  =  ( 𝐺 ‘ 𝑍 ) )  | 
						
						
							| 26 | 
							
								25
							 | 
							bnj1265 | 
							⊢ ( 𝑔  ∈  𝐾  →  ∀ 𝑥  ∈  dom  𝑔 ( 𝑔 ‘ 𝑥 )  =  ( 𝐺 ‘ 𝑍 ) )  | 
						
						
							| 27 | 
							
								2 3 9 10
							 | 
							bnj1234 | 
							⊢ 𝐶  =  𝐾  | 
						
						
							| 28 | 
							
								26 27
							 | 
							eleq2s | 
							⊢ ( 𝑔  ∈  𝐶  →  ∀ 𝑥  ∈  dom  𝑔 ( 𝑔 ‘ 𝑥 )  =  ( 𝐺 ‘ 𝑍 ) )  | 
						
						
							| 29 | 
							
								6 28
							 | 
							bnj770 | 
							⊢ ( 𝜑  →  ∀ 𝑥  ∈  dom  𝑔 ( 𝑔 ‘ 𝑥 )  =  ( 𝐺 ‘ 𝑍 ) )  | 
						
						
							| 30 | 
							
								7 29
							 | 
							bnj835 | 
							⊢ ( 𝜓  →  ∀ 𝑥  ∈  dom  𝑔 ( 𝑔 ‘ 𝑥 )  =  ( 𝐺 ‘ 𝑍 ) )  | 
						
						
							| 31 | 
							
								4
							 | 
							bnj1292 | 
							⊢ 𝐷  ⊆  dom  𝑔  | 
						
						
							| 32 | 
							
								5 7
							 | 
							bnj1212 | 
							⊢ ( 𝜓  →  𝑥  ∈  𝐷 )  | 
						
						
							| 33 | 
							
								31 32
							 | 
							bnj1213 | 
							⊢ ( 𝜓  →  𝑥  ∈  dom  𝑔 )  | 
						
						
							| 34 | 
							
								30 33
							 | 
							bnj1294 | 
							⊢ ( 𝜓  →  ( 𝑔 ‘ 𝑥 )  =  ( 𝐺 ‘ 𝑍 ) )  | 
						
						
							| 35 | 
							
								12
							 | 
							bnj1436 | 
							⊢ ( ℎ  ∈  𝐿  →  ∃ 𝑑  ∈  𝐵 ( ℎ  Fn  𝑑  ∧  ∀ 𝑥  ∈  𝑑 ( ℎ ‘ 𝑥 )  =  ( 𝐺 ‘ 𝑊 ) ) )  | 
						
						
							| 36 | 
							
								
							 | 
							fndm | 
							⊢ ( ℎ  Fn  𝑑  →  dom  ℎ  =  𝑑 )  | 
						
						
							| 37 | 
							
								36
							 | 
							anim1i | 
							⊢ ( ( ℎ  Fn  𝑑  ∧  ∀ 𝑥  ∈  𝑑 ( ℎ ‘ 𝑥 )  =  ( 𝐺 ‘ 𝑊 ) )  →  ( dom  ℎ  =  𝑑  ∧  ∀ 𝑥  ∈  𝑑 ( ℎ ‘ 𝑥 )  =  ( 𝐺 ‘ 𝑊 ) ) )  | 
						
						
							| 38 | 
							
								35 37
							 | 
							bnj31 | 
							⊢ ( ℎ  ∈  𝐿  →  ∃ 𝑑  ∈  𝐵 ( dom  ℎ  =  𝑑  ∧  ∀ 𝑥  ∈  𝑑 ( ℎ ‘ 𝑥 )  =  ( 𝐺 ‘ 𝑊 ) ) )  | 
						
						
							| 39 | 
							
								
							 | 
							raleq | 
							⊢ ( dom  ℎ  =  𝑑  →  ( ∀ 𝑥  ∈  dom  ℎ ( ℎ ‘ 𝑥 )  =  ( 𝐺 ‘ 𝑊 )  ↔  ∀ 𝑥  ∈  𝑑 ( ℎ ‘ 𝑥 )  =  ( 𝐺 ‘ 𝑊 ) ) )  | 
						
						
							| 40 | 
							
								39
							 | 
							pm5.32i | 
							⊢ ( ( dom  ℎ  =  𝑑  ∧  ∀ 𝑥  ∈  dom  ℎ ( ℎ ‘ 𝑥 )  =  ( 𝐺 ‘ 𝑊 ) )  ↔  ( dom  ℎ  =  𝑑  ∧  ∀ 𝑥  ∈  𝑑 ( ℎ ‘ 𝑥 )  =  ( 𝐺 ‘ 𝑊 ) ) )  | 
						
						
							| 41 | 
							
								40
							 | 
							rexbii | 
							⊢ ( ∃ 𝑑  ∈  𝐵 ( dom  ℎ  =  𝑑  ∧  ∀ 𝑥  ∈  dom  ℎ ( ℎ ‘ 𝑥 )  =  ( 𝐺 ‘ 𝑊 ) )  ↔  ∃ 𝑑  ∈  𝐵 ( dom  ℎ  =  𝑑  ∧  ∀ 𝑥  ∈  𝑑 ( ℎ ‘ 𝑥 )  =  ( 𝐺 ‘ 𝑊 ) ) )  | 
						
						
							| 42 | 
							
								38 41
							 | 
							sylibr | 
							⊢ ( ℎ  ∈  𝐿  →  ∃ 𝑑  ∈  𝐵 ( dom  ℎ  =  𝑑  ∧  ∀ 𝑥  ∈  dom  ℎ ( ℎ ‘ 𝑥 )  =  ( 𝐺 ‘ 𝑊 ) ) )  | 
						
						
							| 43 | 
							
								
							 | 
							simpr | 
							⊢ ( ( dom  ℎ  =  𝑑  ∧  ∀ 𝑥  ∈  dom  ℎ ( ℎ ‘ 𝑥 )  =  ( 𝐺 ‘ 𝑊 ) )  →  ∀ 𝑥  ∈  dom  ℎ ( ℎ ‘ 𝑥 )  =  ( 𝐺 ‘ 𝑊 ) )  | 
						
						
							| 44 | 
							
								42 43
							 | 
							bnj31 | 
							⊢ ( ℎ  ∈  𝐿  →  ∃ 𝑑  ∈  𝐵 ∀ 𝑥  ∈  dom  ℎ ( ℎ ‘ 𝑥 )  =  ( 𝐺 ‘ 𝑊 ) )  | 
						
						
							| 45 | 
							
								44
							 | 
							bnj1265 | 
							⊢ ( ℎ  ∈  𝐿  →  ∀ 𝑥  ∈  dom  ℎ ( ℎ ‘ 𝑥 )  =  ( 𝐺 ‘ 𝑊 ) )  | 
						
						
							| 46 | 
							
								2 3 11 12
							 | 
							bnj1234 | 
							⊢ 𝐶  =  𝐿  | 
						
						
							| 47 | 
							
								45 46
							 | 
							eleq2s | 
							⊢ ( ℎ  ∈  𝐶  →  ∀ 𝑥  ∈  dom  ℎ ( ℎ ‘ 𝑥 )  =  ( 𝐺 ‘ 𝑊 ) )  | 
						
						
							| 48 | 
							
								6 47
							 | 
							bnj771 | 
							⊢ ( 𝜑  →  ∀ 𝑥  ∈  dom  ℎ ( ℎ ‘ 𝑥 )  =  ( 𝐺 ‘ 𝑊 ) )  | 
						
						
							| 49 | 
							
								7 48
							 | 
							bnj835 | 
							⊢ ( 𝜓  →  ∀ 𝑥  ∈  dom  ℎ ( ℎ ‘ 𝑥 )  =  ( 𝐺 ‘ 𝑊 ) )  | 
						
						
							| 50 | 
							
								4
							 | 
							bnj1293 | 
							⊢ 𝐷  ⊆  dom  ℎ  | 
						
						
							| 51 | 
							
								50 32
							 | 
							bnj1213 | 
							⊢ ( 𝜓  →  𝑥  ∈  dom  ℎ )  | 
						
						
							| 52 | 
							
								49 51
							 | 
							bnj1294 | 
							⊢ ( 𝜓  →  ( ℎ ‘ 𝑥 )  =  ( 𝐺 ‘ 𝑊 ) )  | 
						
						
							| 53 | 
							
								15 34 52
							 | 
							3eqtr4d | 
							⊢ ( 𝜓  →  ( 𝑔 ‘ 𝑥 )  =  ( ℎ ‘ 𝑥 ) )  |