| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							bnj1304.1 | 
							⊢ ( 𝜑  →  ∃ 𝑥 𝜓 )  | 
						
						
							| 2 | 
							
								
							 | 
							bnj1304.2 | 
							⊢ ( 𝜓  →  𝜒 )  | 
						
						
							| 3 | 
							
								
							 | 
							bnj1304.3 | 
							⊢ ( 𝜓  →  ¬  𝜒 )  | 
						
						
							| 4 | 
							
								
							 | 
							notnotb | 
							⊢ ( ∀ 𝑥 ( 𝜒  ∨  ¬  𝜒 )  ↔  ¬  ¬  ∀ 𝑥 ( 𝜒  ∨  ¬  𝜒 ) )  | 
						
						
							| 5 | 
							
								
							 | 
							notnotb | 
							⊢ ( 𝜒  ↔  ¬  ¬  𝜒 )  | 
						
						
							| 6 | 
							
								5
							 | 
							anbi2i | 
							⊢ ( ( ¬  𝜒  ∧  𝜒 )  ↔  ( ¬  𝜒  ∧  ¬  ¬  𝜒 ) )  | 
						
						
							| 7 | 
							
								6
							 | 
							exbii | 
							⊢ ( ∃ 𝑥 ( ¬  𝜒  ∧  𝜒 )  ↔  ∃ 𝑥 ( ¬  𝜒  ∧  ¬  ¬  𝜒 ) )  | 
						
						
							| 8 | 
							
								
							 | 
							ioran | 
							⊢ ( ¬  ( 𝜒  ∨  ¬  𝜒 )  ↔  ( ¬  𝜒  ∧  ¬  ¬  𝜒 ) )  | 
						
						
							| 9 | 
							
								8
							 | 
							exbii | 
							⊢ ( ∃ 𝑥 ¬  ( 𝜒  ∨  ¬  𝜒 )  ↔  ∃ 𝑥 ( ¬  𝜒  ∧  ¬  ¬  𝜒 ) )  | 
						
						
							| 10 | 
							
								
							 | 
							exnal | 
							⊢ ( ∃ 𝑥 ¬  ( 𝜒  ∨  ¬  𝜒 )  ↔  ¬  ∀ 𝑥 ( 𝜒  ∨  ¬  𝜒 ) )  | 
						
						
							| 11 | 
							
								7 9 10
							 | 
							3bitr2ri | 
							⊢ ( ¬  ∀ 𝑥 ( 𝜒  ∨  ¬  𝜒 )  ↔  ∃ 𝑥 ( ¬  𝜒  ∧  𝜒 ) )  | 
						
						
							| 12 | 
							
								11
							 | 
							notbii | 
							⊢ ( ¬  ¬  ∀ 𝑥 ( 𝜒  ∨  ¬  𝜒 )  ↔  ¬  ∃ 𝑥 ( ¬  𝜒  ∧  𝜒 ) )  | 
						
						
							| 13 | 
							
								
							 | 
							exancom | 
							⊢ ( ∃ 𝑥 ( ¬  𝜒  ∧  𝜒 )  ↔  ∃ 𝑥 ( 𝜒  ∧  ¬  𝜒 ) )  | 
						
						
							| 14 | 
							
								13
							 | 
							notbii | 
							⊢ ( ¬  ∃ 𝑥 ( ¬  𝜒  ∧  𝜒 )  ↔  ¬  ∃ 𝑥 ( 𝜒  ∧  ¬  𝜒 ) )  | 
						
						
							| 15 | 
							
								4 12 14
							 | 
							3bitri | 
							⊢ ( ∀ 𝑥 ( 𝜒  ∨  ¬  𝜒 )  ↔  ¬  ∃ 𝑥 ( 𝜒  ∧  ¬  𝜒 ) )  | 
						
						
							| 16 | 
							
								
							 | 
							exmid | 
							⊢ ( 𝜒  ∨  ¬  𝜒 )  | 
						
						
							| 17 | 
							
								15 16
							 | 
							mpgbi | 
							⊢ ¬  ∃ 𝑥 ( 𝜒  ∧  ¬  𝜒 )  | 
						
						
							| 18 | 
							
								2 3
							 | 
							jca | 
							⊢ ( 𝜓  →  ( 𝜒  ∧  ¬  𝜒 ) )  | 
						
						
							| 19 | 
							
								1 18
							 | 
							bnj593 | 
							⊢ ( 𝜑  →  ∃ 𝑥 ( 𝜒  ∧  ¬  𝜒 ) )  | 
						
						
							| 20 | 
							
								17 19
							 | 
							mto | 
							⊢ ¬  𝜑  |