| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							bnj1311.1 | 
							⊢ 𝐵  =  { 𝑑  ∣  ( 𝑑  ⊆  𝐴  ∧  ∀ 𝑥  ∈  𝑑  pred ( 𝑥 ,  𝐴 ,  𝑅 )  ⊆  𝑑 ) }  | 
						
						
							| 2 | 
							
								
							 | 
							bnj1311.2 | 
							⊢ 𝑌  =  〈 𝑥 ,  ( 𝑓  ↾   pred ( 𝑥 ,  𝐴 ,  𝑅 ) ) 〉  | 
						
						
							| 3 | 
							
								
							 | 
							bnj1311.3 | 
							⊢ 𝐶  =  { 𝑓  ∣  ∃ 𝑑  ∈  𝐵 ( 𝑓  Fn  𝑑  ∧  ∀ 𝑥  ∈  𝑑 ( 𝑓 ‘ 𝑥 )  =  ( 𝐺 ‘ 𝑌 ) ) }  | 
						
						
							| 4 | 
							
								
							 | 
							bnj1311.4 | 
							⊢ 𝐷  =  ( dom  𝑔  ∩  dom  ℎ )  | 
						
						
							| 5 | 
							
								
							 | 
							biid | 
							⊢ ( ( 𝑅  FrSe  𝐴  ∧  𝑔  ∈  𝐶  ∧  ℎ  ∈  𝐶  ∧  ( 𝑔  ↾  𝐷 )  ≠  ( ℎ  ↾  𝐷 ) )  ↔  ( 𝑅  FrSe  𝐴  ∧  𝑔  ∈  𝐶  ∧  ℎ  ∈  𝐶  ∧  ( 𝑔  ↾  𝐷 )  ≠  ( ℎ  ↾  𝐷 ) ) )  | 
						
						
							| 6 | 
							
								5
							 | 
							bnj1232 | 
							⊢ ( ( 𝑅  FrSe  𝐴  ∧  𝑔  ∈  𝐶  ∧  ℎ  ∈  𝐶  ∧  ( 𝑔  ↾  𝐷 )  ≠  ( ℎ  ↾  𝐷 ) )  →  𝑅  FrSe  𝐴 )  | 
						
						
							| 7 | 
							
								
							 | 
							ssrab2 | 
							⊢ { 𝑥  ∈  𝐷  ∣  ( 𝑔 ‘ 𝑥 )  ≠  ( ℎ ‘ 𝑥 ) }  ⊆  𝐷  | 
						
						
							| 8 | 
							
								5
							 | 
							bnj1235 | 
							⊢ ( ( 𝑅  FrSe  𝐴  ∧  𝑔  ∈  𝐶  ∧  ℎ  ∈  𝐶  ∧  ( 𝑔  ↾  𝐷 )  ≠  ( ℎ  ↾  𝐷 ) )  →  𝑔  ∈  𝐶 )  | 
						
						
							| 9 | 
							
								
							 | 
							eqid | 
							⊢ 〈 𝑥 ,  ( 𝑔  ↾   pred ( 𝑥 ,  𝐴 ,  𝑅 ) ) 〉  =  〈 𝑥 ,  ( 𝑔  ↾   pred ( 𝑥 ,  𝐴 ,  𝑅 ) ) 〉  | 
						
						
							| 10 | 
							
								
							 | 
							eqid | 
							⊢ { 𝑔  ∣  ∃ 𝑑  ∈  𝐵 ( 𝑔  Fn  𝑑  ∧  ∀ 𝑥  ∈  𝑑 ( 𝑔 ‘ 𝑥 )  =  ( 𝐺 ‘ 〈 𝑥 ,  ( 𝑔  ↾   pred ( 𝑥 ,  𝐴 ,  𝑅 ) ) 〉 ) ) }  =  { 𝑔  ∣  ∃ 𝑑  ∈  𝐵 ( 𝑔  Fn  𝑑  ∧  ∀ 𝑥  ∈  𝑑 ( 𝑔 ‘ 𝑥 )  =  ( 𝐺 ‘ 〈 𝑥 ,  ( 𝑔  ↾   pred ( 𝑥 ,  𝐴 ,  𝑅 ) ) 〉 ) ) }  | 
						
						
							| 11 | 
							
								2 3 9 10
							 | 
							bnj1234 | 
							⊢ 𝐶  =  { 𝑔  ∣  ∃ 𝑑  ∈  𝐵 ( 𝑔  Fn  𝑑  ∧  ∀ 𝑥  ∈  𝑑 ( 𝑔 ‘ 𝑥 )  =  ( 𝐺 ‘ 〈 𝑥 ,  ( 𝑔  ↾   pred ( 𝑥 ,  𝐴 ,  𝑅 ) ) 〉 ) ) }  | 
						
						
							| 12 | 
							
								8 11
							 | 
							eleqtrdi | 
							⊢ ( ( 𝑅  FrSe  𝐴  ∧  𝑔  ∈  𝐶  ∧  ℎ  ∈  𝐶  ∧  ( 𝑔  ↾  𝐷 )  ≠  ( ℎ  ↾  𝐷 ) )  →  𝑔  ∈  { 𝑔  ∣  ∃ 𝑑  ∈  𝐵 ( 𝑔  Fn  𝑑  ∧  ∀ 𝑥  ∈  𝑑 ( 𝑔 ‘ 𝑥 )  =  ( 𝐺 ‘ 〈 𝑥 ,  ( 𝑔  ↾   pred ( 𝑥 ,  𝐴 ,  𝑅 ) ) 〉 ) ) } )  | 
						
						
							| 13 | 
							
								
							 | 
							abid | 
							⊢ ( 𝑔  ∈  { 𝑔  ∣  ∃ 𝑑  ∈  𝐵 ( 𝑔  Fn  𝑑  ∧  ∀ 𝑥  ∈  𝑑 ( 𝑔 ‘ 𝑥 )  =  ( 𝐺 ‘ 〈 𝑥 ,  ( 𝑔  ↾   pred ( 𝑥 ,  𝐴 ,  𝑅 ) ) 〉 ) ) }  ↔  ∃ 𝑑  ∈  𝐵 ( 𝑔  Fn  𝑑  ∧  ∀ 𝑥  ∈  𝑑 ( 𝑔 ‘ 𝑥 )  =  ( 𝐺 ‘ 〈 𝑥 ,  ( 𝑔  ↾   pred ( 𝑥 ,  𝐴 ,  𝑅 ) ) 〉 ) ) )  | 
						
						
							| 14 | 
							
								13
							 | 
							bnj1238 | 
							⊢ ( 𝑔  ∈  { 𝑔  ∣  ∃ 𝑑  ∈  𝐵 ( 𝑔  Fn  𝑑  ∧  ∀ 𝑥  ∈  𝑑 ( 𝑔 ‘ 𝑥 )  =  ( 𝐺 ‘ 〈 𝑥 ,  ( 𝑔  ↾   pred ( 𝑥 ,  𝐴 ,  𝑅 ) ) 〉 ) ) }  →  ∃ 𝑑  ∈  𝐵 𝑔  Fn  𝑑 )  | 
						
						
							| 15 | 
							
								14
							 | 
							bnj1196 | 
							⊢ ( 𝑔  ∈  { 𝑔  ∣  ∃ 𝑑  ∈  𝐵 ( 𝑔  Fn  𝑑  ∧  ∀ 𝑥  ∈  𝑑 ( 𝑔 ‘ 𝑥 )  =  ( 𝐺 ‘ 〈 𝑥 ,  ( 𝑔  ↾   pred ( 𝑥 ,  𝐴 ,  𝑅 ) ) 〉 ) ) }  →  ∃ 𝑑 ( 𝑑  ∈  𝐵  ∧  𝑔  Fn  𝑑 ) )  | 
						
						
							| 16 | 
							
								1
							 | 
							eqabri | 
							⊢ ( 𝑑  ∈  𝐵  ↔  ( 𝑑  ⊆  𝐴  ∧  ∀ 𝑥  ∈  𝑑  pred ( 𝑥 ,  𝐴 ,  𝑅 )  ⊆  𝑑 ) )  | 
						
						
							| 17 | 
							
								16
							 | 
							simplbi | 
							⊢ ( 𝑑  ∈  𝐵  →  𝑑  ⊆  𝐴 )  | 
						
						
							| 18 | 
							
								
							 | 
							fndm | 
							⊢ ( 𝑔  Fn  𝑑  →  dom  𝑔  =  𝑑 )  | 
						
						
							| 19 | 
							
								17 18
							 | 
							bnj1241 | 
							⊢ ( ( 𝑑  ∈  𝐵  ∧  𝑔  Fn  𝑑 )  →  dom  𝑔  ⊆  𝐴 )  | 
						
						
							| 20 | 
							
								15 19
							 | 
							bnj593 | 
							⊢ ( 𝑔  ∈  { 𝑔  ∣  ∃ 𝑑  ∈  𝐵 ( 𝑔  Fn  𝑑  ∧  ∀ 𝑥  ∈  𝑑 ( 𝑔 ‘ 𝑥 )  =  ( 𝐺 ‘ 〈 𝑥 ,  ( 𝑔  ↾   pred ( 𝑥 ,  𝐴 ,  𝑅 ) ) 〉 ) ) }  →  ∃ 𝑑 dom  𝑔  ⊆  𝐴 )  | 
						
						
							| 21 | 
							
								20
							 | 
							bnj937 | 
							⊢ ( 𝑔  ∈  { 𝑔  ∣  ∃ 𝑑  ∈  𝐵 ( 𝑔  Fn  𝑑  ∧  ∀ 𝑥  ∈  𝑑 ( 𝑔 ‘ 𝑥 )  =  ( 𝐺 ‘ 〈 𝑥 ,  ( 𝑔  ↾   pred ( 𝑥 ,  𝐴 ,  𝑅 ) ) 〉 ) ) }  →  dom  𝑔  ⊆  𝐴 )  | 
						
						
							| 22 | 
							
								
							 | 
							ssinss1 | 
							⊢ ( dom  𝑔  ⊆  𝐴  →  ( dom  𝑔  ∩  dom  ℎ )  ⊆  𝐴 )  | 
						
						
							| 23 | 
							
								12 21 22
							 | 
							3syl | 
							⊢ ( ( 𝑅  FrSe  𝐴  ∧  𝑔  ∈  𝐶  ∧  ℎ  ∈  𝐶  ∧  ( 𝑔  ↾  𝐷 )  ≠  ( ℎ  ↾  𝐷 ) )  →  ( dom  𝑔  ∩  dom  ℎ )  ⊆  𝐴 )  | 
						
						
							| 24 | 
							
								4 23
							 | 
							eqsstrid | 
							⊢ ( ( 𝑅  FrSe  𝐴  ∧  𝑔  ∈  𝐶  ∧  ℎ  ∈  𝐶  ∧  ( 𝑔  ↾  𝐷 )  ≠  ( ℎ  ↾  𝐷 ) )  →  𝐷  ⊆  𝐴 )  | 
						
						
							| 25 | 
							
								7 24
							 | 
							sstrid | 
							⊢ ( ( 𝑅  FrSe  𝐴  ∧  𝑔  ∈  𝐶  ∧  ℎ  ∈  𝐶  ∧  ( 𝑔  ↾  𝐷 )  ≠  ( ℎ  ↾  𝐷 ) )  →  { 𝑥  ∈  𝐷  ∣  ( 𝑔 ‘ 𝑥 )  ≠  ( ℎ ‘ 𝑥 ) }  ⊆  𝐴 )  | 
						
						
							| 26 | 
							
								
							 | 
							eqid | 
							⊢ { 𝑥  ∈  𝐷  ∣  ( 𝑔 ‘ 𝑥 )  ≠  ( ℎ ‘ 𝑥 ) }  =  { 𝑥  ∈  𝐷  ∣  ( 𝑔 ‘ 𝑥 )  ≠  ( ℎ ‘ 𝑥 ) }  | 
						
						
							| 27 | 
							
								
							 | 
							biid | 
							⊢ ( ( ( 𝑅  FrSe  𝐴  ∧  𝑔  ∈  𝐶  ∧  ℎ  ∈  𝐶  ∧  ( 𝑔  ↾  𝐷 )  ≠  ( ℎ  ↾  𝐷 ) )  ∧  𝑥  ∈  { 𝑥  ∈  𝐷  ∣  ( 𝑔 ‘ 𝑥 )  ≠  ( ℎ ‘ 𝑥 ) }  ∧  ∀ 𝑦  ∈  { 𝑥  ∈  𝐷  ∣  ( 𝑔 ‘ 𝑥 )  ≠  ( ℎ ‘ 𝑥 ) } ¬  𝑦 𝑅 𝑥 )  ↔  ( ( 𝑅  FrSe  𝐴  ∧  𝑔  ∈  𝐶  ∧  ℎ  ∈  𝐶  ∧  ( 𝑔  ↾  𝐷 )  ≠  ( ℎ  ↾  𝐷 ) )  ∧  𝑥  ∈  { 𝑥  ∈  𝐷  ∣  ( 𝑔 ‘ 𝑥 )  ≠  ( ℎ ‘ 𝑥 ) }  ∧  ∀ 𝑦  ∈  { 𝑥  ∈  𝐷  ∣  ( 𝑔 ‘ 𝑥 )  ≠  ( ℎ ‘ 𝑥 ) } ¬  𝑦 𝑅 𝑥 ) )  | 
						
						
							| 28 | 
							
								1 2 3 4 26 5 27
							 | 
							bnj1253 | 
							⊢ ( ( 𝑅  FrSe  𝐴  ∧  𝑔  ∈  𝐶  ∧  ℎ  ∈  𝐶  ∧  ( 𝑔  ↾  𝐷 )  ≠  ( ℎ  ↾  𝐷 ) )  →  { 𝑥  ∈  𝐷  ∣  ( 𝑔 ‘ 𝑥 )  ≠  ( ℎ ‘ 𝑥 ) }  ≠  ∅ )  | 
						
						
							| 29 | 
							
								
							 | 
							nfrab1 | 
							⊢ Ⅎ 𝑥 { 𝑥  ∈  𝐷  ∣  ( 𝑔 ‘ 𝑥 )  ≠  ( ℎ ‘ 𝑥 ) }  | 
						
						
							| 30 | 
							
								29
							 | 
							nfcrii | 
							⊢ ( 𝑧  ∈  { 𝑥  ∈  𝐷  ∣  ( 𝑔 ‘ 𝑥 )  ≠  ( ℎ ‘ 𝑥 ) }  →  ∀ 𝑥 𝑧  ∈  { 𝑥  ∈  𝐷  ∣  ( 𝑔 ‘ 𝑥 )  ≠  ( ℎ ‘ 𝑥 ) } )  | 
						
						
							| 31 | 
							
								30
							 | 
							bnj1228 | 
							⊢ ( ( 𝑅  FrSe  𝐴  ∧  { 𝑥  ∈  𝐷  ∣  ( 𝑔 ‘ 𝑥 )  ≠  ( ℎ ‘ 𝑥 ) }  ⊆  𝐴  ∧  { 𝑥  ∈  𝐷  ∣  ( 𝑔 ‘ 𝑥 )  ≠  ( ℎ ‘ 𝑥 ) }  ≠  ∅ )  →  ∃ 𝑥  ∈  { 𝑥  ∈  𝐷  ∣  ( 𝑔 ‘ 𝑥 )  ≠  ( ℎ ‘ 𝑥 ) } ∀ 𝑦  ∈  { 𝑥  ∈  𝐷  ∣  ( 𝑔 ‘ 𝑥 )  ≠  ( ℎ ‘ 𝑥 ) } ¬  𝑦 𝑅 𝑥 )  | 
						
						
							| 32 | 
							
								6 25 28 31
							 | 
							syl3anc | 
							⊢ ( ( 𝑅  FrSe  𝐴  ∧  𝑔  ∈  𝐶  ∧  ℎ  ∈  𝐶  ∧  ( 𝑔  ↾  𝐷 )  ≠  ( ℎ  ↾  𝐷 ) )  →  ∃ 𝑥  ∈  { 𝑥  ∈  𝐷  ∣  ( 𝑔 ‘ 𝑥 )  ≠  ( ℎ ‘ 𝑥 ) } ∀ 𝑦  ∈  { 𝑥  ∈  𝐷  ∣  ( 𝑔 ‘ 𝑥 )  ≠  ( ℎ ‘ 𝑥 ) } ¬  𝑦 𝑅 𝑥 )  | 
						
						
							| 33 | 
							
								
							 | 
							ax-5 | 
							⊢ ( 𝑅  FrSe  𝐴  →  ∀ 𝑥 𝑅  FrSe  𝐴 )  | 
						
						
							| 34 | 
							
								1
							 | 
							bnj1309 | 
							⊢ ( 𝑤  ∈  𝐵  →  ∀ 𝑥 𝑤  ∈  𝐵 )  | 
						
						
							| 35 | 
							
								3 34
							 | 
							bnj1307 | 
							⊢ ( 𝑤  ∈  𝐶  →  ∀ 𝑥 𝑤  ∈  𝐶 )  | 
						
						
							| 36 | 
							
								35
							 | 
							hblem | 
							⊢ ( 𝑔  ∈  𝐶  →  ∀ 𝑥 𝑔  ∈  𝐶 )  | 
						
						
							| 37 | 
							
								35
							 | 
							hblem | 
							⊢ ( ℎ  ∈  𝐶  →  ∀ 𝑥 ℎ  ∈  𝐶 )  | 
						
						
							| 38 | 
							
								
							 | 
							ax-5 | 
							⊢ ( ( 𝑔  ↾  𝐷 )  ≠  ( ℎ  ↾  𝐷 )  →  ∀ 𝑥 ( 𝑔  ↾  𝐷 )  ≠  ( ℎ  ↾  𝐷 ) )  | 
						
						
							| 39 | 
							
								33 36 37 38
							 | 
							bnj982 | 
							⊢ ( ( 𝑅  FrSe  𝐴  ∧  𝑔  ∈  𝐶  ∧  ℎ  ∈  𝐶  ∧  ( 𝑔  ↾  𝐷 )  ≠  ( ℎ  ↾  𝐷 ) )  →  ∀ 𝑥 ( 𝑅  FrSe  𝐴  ∧  𝑔  ∈  𝐶  ∧  ℎ  ∈  𝐶  ∧  ( 𝑔  ↾  𝐷 )  ≠  ( ℎ  ↾  𝐷 ) ) )  | 
						
						
							| 40 | 
							
								32 27 39
							 | 
							bnj1521 | 
							⊢ ( ( 𝑅  FrSe  𝐴  ∧  𝑔  ∈  𝐶  ∧  ℎ  ∈  𝐶  ∧  ( 𝑔  ↾  𝐷 )  ≠  ( ℎ  ↾  𝐷 ) )  →  ∃ 𝑥 ( ( 𝑅  FrSe  𝐴  ∧  𝑔  ∈  𝐶  ∧  ℎ  ∈  𝐶  ∧  ( 𝑔  ↾  𝐷 )  ≠  ( ℎ  ↾  𝐷 ) )  ∧  𝑥  ∈  { 𝑥  ∈  𝐷  ∣  ( 𝑔 ‘ 𝑥 )  ≠  ( ℎ ‘ 𝑥 ) }  ∧  ∀ 𝑦  ∈  { 𝑥  ∈  𝐷  ∣  ( 𝑔 ‘ 𝑥 )  ≠  ( ℎ ‘ 𝑥 ) } ¬  𝑦 𝑅 𝑥 ) )  | 
						
						
							| 41 | 
							
								
							 | 
							simp2 | 
							⊢ ( ( ( 𝑅  FrSe  𝐴  ∧  𝑔  ∈  𝐶  ∧  ℎ  ∈  𝐶  ∧  ( 𝑔  ↾  𝐷 )  ≠  ( ℎ  ↾  𝐷 ) )  ∧  𝑥  ∈  { 𝑥  ∈  𝐷  ∣  ( 𝑔 ‘ 𝑥 )  ≠  ( ℎ ‘ 𝑥 ) }  ∧  ∀ 𝑦  ∈  { 𝑥  ∈  𝐷  ∣  ( 𝑔 ‘ 𝑥 )  ≠  ( ℎ ‘ 𝑥 ) } ¬  𝑦 𝑅 𝑥 )  →  𝑥  ∈  { 𝑥  ∈  𝐷  ∣  ( 𝑔 ‘ 𝑥 )  ≠  ( ℎ ‘ 𝑥 ) } )  | 
						
						
							| 42 | 
							
								1 2 3 4 26 5 27
							 | 
							bnj1279 | 
							⊢ ( ( 𝑥  ∈  { 𝑥  ∈  𝐷  ∣  ( 𝑔 ‘ 𝑥 )  ≠  ( ℎ ‘ 𝑥 ) }  ∧  ∀ 𝑦  ∈  { 𝑥  ∈  𝐷  ∣  ( 𝑔 ‘ 𝑥 )  ≠  ( ℎ ‘ 𝑥 ) } ¬  𝑦 𝑅 𝑥 )  →  (  pred ( 𝑥 ,  𝐴 ,  𝑅 )  ∩  { 𝑥  ∈  𝐷  ∣  ( 𝑔 ‘ 𝑥 )  ≠  ( ℎ ‘ 𝑥 ) } )  =  ∅ )  | 
						
						
							| 43 | 
							
								42
							 | 
							3adant1 | 
							⊢ ( ( ( 𝑅  FrSe  𝐴  ∧  𝑔  ∈  𝐶  ∧  ℎ  ∈  𝐶  ∧  ( 𝑔  ↾  𝐷 )  ≠  ( ℎ  ↾  𝐷 ) )  ∧  𝑥  ∈  { 𝑥  ∈  𝐷  ∣  ( 𝑔 ‘ 𝑥 )  ≠  ( ℎ ‘ 𝑥 ) }  ∧  ∀ 𝑦  ∈  { 𝑥  ∈  𝐷  ∣  ( 𝑔 ‘ 𝑥 )  ≠  ( ℎ ‘ 𝑥 ) } ¬  𝑦 𝑅 𝑥 )  →  (  pred ( 𝑥 ,  𝐴 ,  𝑅 )  ∩  { 𝑥  ∈  𝐷  ∣  ( 𝑔 ‘ 𝑥 )  ≠  ( ℎ ‘ 𝑥 ) } )  =  ∅ )  | 
						
						
							| 44 | 
							
								1 2 3 4 26 5 27 43
							 | 
							bnj1280 | 
							⊢ ( ( ( 𝑅  FrSe  𝐴  ∧  𝑔  ∈  𝐶  ∧  ℎ  ∈  𝐶  ∧  ( 𝑔  ↾  𝐷 )  ≠  ( ℎ  ↾  𝐷 ) )  ∧  𝑥  ∈  { 𝑥  ∈  𝐷  ∣  ( 𝑔 ‘ 𝑥 )  ≠  ( ℎ ‘ 𝑥 ) }  ∧  ∀ 𝑦  ∈  { 𝑥  ∈  𝐷  ∣  ( 𝑔 ‘ 𝑥 )  ≠  ( ℎ ‘ 𝑥 ) } ¬  𝑦 𝑅 𝑥 )  →  ( 𝑔  ↾   pred ( 𝑥 ,  𝐴 ,  𝑅 ) )  =  ( ℎ  ↾   pred ( 𝑥 ,  𝐴 ,  𝑅 ) ) )  | 
						
						
							| 45 | 
							
								
							 | 
							eqid | 
							⊢ 〈 𝑥 ,  ( ℎ  ↾   pred ( 𝑥 ,  𝐴 ,  𝑅 ) ) 〉  =  〈 𝑥 ,  ( ℎ  ↾   pred ( 𝑥 ,  𝐴 ,  𝑅 ) ) 〉  | 
						
						
							| 46 | 
							
								
							 | 
							eqid | 
							⊢ { ℎ  ∣  ∃ 𝑑  ∈  𝐵 ( ℎ  Fn  𝑑  ∧  ∀ 𝑥  ∈  𝑑 ( ℎ ‘ 𝑥 )  =  ( 𝐺 ‘ 〈 𝑥 ,  ( ℎ  ↾   pred ( 𝑥 ,  𝐴 ,  𝑅 ) ) 〉 ) ) }  =  { ℎ  ∣  ∃ 𝑑  ∈  𝐵 ( ℎ  Fn  𝑑  ∧  ∀ 𝑥  ∈  𝑑 ( ℎ ‘ 𝑥 )  =  ( 𝐺 ‘ 〈 𝑥 ,  ( ℎ  ↾   pred ( 𝑥 ,  𝐴 ,  𝑅 ) ) 〉 ) ) }  | 
						
						
							| 47 | 
							
								1 2 3 4 26 5 27 44 9 10 45 46
							 | 
							bnj1296 | 
							⊢ ( ( ( 𝑅  FrSe  𝐴  ∧  𝑔  ∈  𝐶  ∧  ℎ  ∈  𝐶  ∧  ( 𝑔  ↾  𝐷 )  ≠  ( ℎ  ↾  𝐷 ) )  ∧  𝑥  ∈  { 𝑥  ∈  𝐷  ∣  ( 𝑔 ‘ 𝑥 )  ≠  ( ℎ ‘ 𝑥 ) }  ∧  ∀ 𝑦  ∈  { 𝑥  ∈  𝐷  ∣  ( 𝑔 ‘ 𝑥 )  ≠  ( ℎ ‘ 𝑥 ) } ¬  𝑦 𝑅 𝑥 )  →  ( 𝑔 ‘ 𝑥 )  =  ( ℎ ‘ 𝑥 ) )  | 
						
						
							| 48 | 
							
								26
							 | 
							bnj1538 | 
							⊢ ( 𝑥  ∈  { 𝑥  ∈  𝐷  ∣  ( 𝑔 ‘ 𝑥 )  ≠  ( ℎ ‘ 𝑥 ) }  →  ( 𝑔 ‘ 𝑥 )  ≠  ( ℎ ‘ 𝑥 ) )  | 
						
						
							| 49 | 
							
								48
							 | 
							necon2bi | 
							⊢ ( ( 𝑔 ‘ 𝑥 )  =  ( ℎ ‘ 𝑥 )  →  ¬  𝑥  ∈  { 𝑥  ∈  𝐷  ∣  ( 𝑔 ‘ 𝑥 )  ≠  ( ℎ ‘ 𝑥 ) } )  | 
						
						
							| 50 | 
							
								47 49
							 | 
							syl | 
							⊢ ( ( ( 𝑅  FrSe  𝐴  ∧  𝑔  ∈  𝐶  ∧  ℎ  ∈  𝐶  ∧  ( 𝑔  ↾  𝐷 )  ≠  ( ℎ  ↾  𝐷 ) )  ∧  𝑥  ∈  { 𝑥  ∈  𝐷  ∣  ( 𝑔 ‘ 𝑥 )  ≠  ( ℎ ‘ 𝑥 ) }  ∧  ∀ 𝑦  ∈  { 𝑥  ∈  𝐷  ∣  ( 𝑔 ‘ 𝑥 )  ≠  ( ℎ ‘ 𝑥 ) } ¬  𝑦 𝑅 𝑥 )  →  ¬  𝑥  ∈  { 𝑥  ∈  𝐷  ∣  ( 𝑔 ‘ 𝑥 )  ≠  ( ℎ ‘ 𝑥 ) } )  | 
						
						
							| 51 | 
							
								40 41 50
							 | 
							bnj1304 | 
							⊢ ¬  ( 𝑅  FrSe  𝐴  ∧  𝑔  ∈  𝐶  ∧  ℎ  ∈  𝐶  ∧  ( 𝑔  ↾  𝐷 )  ≠  ( ℎ  ↾  𝐷 ) )  | 
						
						
							| 52 | 
							
								
							 | 
							df-bnj17 | 
							⊢ ( ( 𝑅  FrSe  𝐴  ∧  𝑔  ∈  𝐶  ∧  ℎ  ∈  𝐶  ∧  ( 𝑔  ↾  𝐷 )  ≠  ( ℎ  ↾  𝐷 ) )  ↔  ( ( 𝑅  FrSe  𝐴  ∧  𝑔  ∈  𝐶  ∧  ℎ  ∈  𝐶 )  ∧  ( 𝑔  ↾  𝐷 )  ≠  ( ℎ  ↾  𝐷 ) ) )  | 
						
						
							| 53 | 
							
								51 52
							 | 
							mtbi | 
							⊢ ¬  ( ( 𝑅  FrSe  𝐴  ∧  𝑔  ∈  𝐶  ∧  ℎ  ∈  𝐶 )  ∧  ( 𝑔  ↾  𝐷 )  ≠  ( ℎ  ↾  𝐷 ) )  | 
						
						
							| 54 | 
							
								53
							 | 
							imnani | 
							⊢ ( ( 𝑅  FrSe  𝐴  ∧  𝑔  ∈  𝐶  ∧  ℎ  ∈  𝐶 )  →  ¬  ( 𝑔  ↾  𝐷 )  ≠  ( ℎ  ↾  𝐷 ) )  | 
						
						
							| 55 | 
							
								
							 | 
							nne | 
							⊢ ( ¬  ( 𝑔  ↾  𝐷 )  ≠  ( ℎ  ↾  𝐷 )  ↔  ( 𝑔  ↾  𝐷 )  =  ( ℎ  ↾  𝐷 ) )  | 
						
						
							| 56 | 
							
								54 55
							 | 
							sylib | 
							⊢ ( ( 𝑅  FrSe  𝐴  ∧  𝑔  ∈  𝐶  ∧  ℎ  ∈  𝐶 )  →  ( 𝑔  ↾  𝐷 )  =  ( ℎ  ↾  𝐷 ) )  |