| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							bnj602 | 
							⊢ ( 𝑋  =  𝑌  →   pred ( 𝑋 ,  𝐴 ,  𝑅 )  =   pred ( 𝑌 ,  𝐴 ,  𝑅 ) )  | 
						
						
							| 2 | 
							
								1
							 | 
							eqeq2d | 
							⊢ ( 𝑋  =  𝑌  →  ( ( 𝑓 ‘ ∅ )  =   pred ( 𝑋 ,  𝐴 ,  𝑅 )  ↔  ( 𝑓 ‘ ∅ )  =   pred ( 𝑌 ,  𝐴 ,  𝑅 ) ) )  | 
						
						
							| 3 | 
							
								2
							 | 
							3anbi2d | 
							⊢ ( 𝑋  =  𝑌  →  ( ( 𝑓  Fn  𝑛  ∧  ( 𝑓 ‘ ∅ )  =   pred ( 𝑋 ,  𝐴 ,  𝑅 )  ∧  ∀ 𝑖  ∈  ω ( suc  𝑖  ∈  𝑛  →  ( 𝑓 ‘ suc  𝑖 )  =  ∪  𝑦  ∈  ( 𝑓 ‘ 𝑖 )  pred ( 𝑦 ,  𝐴 ,  𝑅 ) ) )  ↔  ( 𝑓  Fn  𝑛  ∧  ( 𝑓 ‘ ∅ )  =   pred ( 𝑌 ,  𝐴 ,  𝑅 )  ∧  ∀ 𝑖  ∈  ω ( suc  𝑖  ∈  𝑛  →  ( 𝑓 ‘ suc  𝑖 )  =  ∪  𝑦  ∈  ( 𝑓 ‘ 𝑖 )  pred ( 𝑦 ,  𝐴 ,  𝑅 ) ) ) ) )  | 
						
						
							| 4 | 
							
								3
							 | 
							rexbidv | 
							⊢ ( 𝑋  =  𝑌  →  ( ∃ 𝑛  ∈  ( ω  ∖  { ∅ } ) ( 𝑓  Fn  𝑛  ∧  ( 𝑓 ‘ ∅ )  =   pred ( 𝑋 ,  𝐴 ,  𝑅 )  ∧  ∀ 𝑖  ∈  ω ( suc  𝑖  ∈  𝑛  →  ( 𝑓 ‘ suc  𝑖 )  =  ∪  𝑦  ∈  ( 𝑓 ‘ 𝑖 )  pred ( 𝑦 ,  𝐴 ,  𝑅 ) ) )  ↔  ∃ 𝑛  ∈  ( ω  ∖  { ∅ } ) ( 𝑓  Fn  𝑛  ∧  ( 𝑓 ‘ ∅ )  =   pred ( 𝑌 ,  𝐴 ,  𝑅 )  ∧  ∀ 𝑖  ∈  ω ( suc  𝑖  ∈  𝑛  →  ( 𝑓 ‘ suc  𝑖 )  =  ∪  𝑦  ∈  ( 𝑓 ‘ 𝑖 )  pred ( 𝑦 ,  𝐴 ,  𝑅 ) ) ) ) )  | 
						
						
							| 5 | 
							
								4
							 | 
							abbidv | 
							⊢ ( 𝑋  =  𝑌  →  { 𝑓  ∣  ∃ 𝑛  ∈  ( ω  ∖  { ∅ } ) ( 𝑓  Fn  𝑛  ∧  ( 𝑓 ‘ ∅ )  =   pred ( 𝑋 ,  𝐴 ,  𝑅 )  ∧  ∀ 𝑖  ∈  ω ( suc  𝑖  ∈  𝑛  →  ( 𝑓 ‘ suc  𝑖 )  =  ∪  𝑦  ∈  ( 𝑓 ‘ 𝑖 )  pred ( 𝑦 ,  𝐴 ,  𝑅 ) ) ) }  =  { 𝑓  ∣  ∃ 𝑛  ∈  ( ω  ∖  { ∅ } ) ( 𝑓  Fn  𝑛  ∧  ( 𝑓 ‘ ∅ )  =   pred ( 𝑌 ,  𝐴 ,  𝑅 )  ∧  ∀ 𝑖  ∈  ω ( suc  𝑖  ∈  𝑛  →  ( 𝑓 ‘ suc  𝑖 )  =  ∪  𝑦  ∈  ( 𝑓 ‘ 𝑖 )  pred ( 𝑦 ,  𝐴 ,  𝑅 ) ) ) } )  | 
						
						
							| 6 | 
							
								
							 | 
							hbab1 | 
							⊢ ( 𝑧  ∈  { 𝑓  ∣  ∃ 𝑛  ∈  ( ω  ∖  { ∅ } ) ( 𝑓  Fn  𝑛  ∧  ( 𝑓 ‘ ∅ )  =   pred ( 𝑋 ,  𝐴 ,  𝑅 )  ∧  ∀ 𝑖  ∈  ω ( suc  𝑖  ∈  𝑛  →  ( 𝑓 ‘ suc  𝑖 )  =  ∪  𝑦  ∈  ( 𝑓 ‘ 𝑖 )  pred ( 𝑦 ,  𝐴 ,  𝑅 ) ) ) }  →  ∀ 𝑓 𝑧  ∈  { 𝑓  ∣  ∃ 𝑛  ∈  ( ω  ∖  { ∅ } ) ( 𝑓  Fn  𝑛  ∧  ( 𝑓 ‘ ∅ )  =   pred ( 𝑋 ,  𝐴 ,  𝑅 )  ∧  ∀ 𝑖  ∈  ω ( suc  𝑖  ∈  𝑛  →  ( 𝑓 ‘ suc  𝑖 )  =  ∪  𝑦  ∈  ( 𝑓 ‘ 𝑖 )  pred ( 𝑦 ,  𝐴 ,  𝑅 ) ) ) } )  | 
						
						
							| 7 | 
							
								
							 | 
							hbab1 | 
							⊢ ( 𝑧  ∈  { 𝑓  ∣  ∃ 𝑛  ∈  ( ω  ∖  { ∅ } ) ( 𝑓  Fn  𝑛  ∧  ( 𝑓 ‘ ∅ )  =   pred ( 𝑌 ,  𝐴 ,  𝑅 )  ∧  ∀ 𝑖  ∈  ω ( suc  𝑖  ∈  𝑛  →  ( 𝑓 ‘ suc  𝑖 )  =  ∪  𝑦  ∈  ( 𝑓 ‘ 𝑖 )  pred ( 𝑦 ,  𝐴 ,  𝑅 ) ) ) }  →  ∀ 𝑓 𝑧  ∈  { 𝑓  ∣  ∃ 𝑛  ∈  ( ω  ∖  { ∅ } ) ( 𝑓  Fn  𝑛  ∧  ( 𝑓 ‘ ∅ )  =   pred ( 𝑌 ,  𝐴 ,  𝑅 )  ∧  ∀ 𝑖  ∈  ω ( suc  𝑖  ∈  𝑛  →  ( 𝑓 ‘ suc  𝑖 )  =  ∪  𝑦  ∈  ( 𝑓 ‘ 𝑖 )  pred ( 𝑦 ,  𝐴 ,  𝑅 ) ) ) } )  | 
						
						
							| 8 | 
							
								6 7
							 | 
							bnj1316 | 
							⊢ ( { 𝑓  ∣  ∃ 𝑛  ∈  ( ω  ∖  { ∅ } ) ( 𝑓  Fn  𝑛  ∧  ( 𝑓 ‘ ∅ )  =   pred ( 𝑋 ,  𝐴 ,  𝑅 )  ∧  ∀ 𝑖  ∈  ω ( suc  𝑖  ∈  𝑛  →  ( 𝑓 ‘ suc  𝑖 )  =  ∪  𝑦  ∈  ( 𝑓 ‘ 𝑖 )  pred ( 𝑦 ,  𝐴 ,  𝑅 ) ) ) }  =  { 𝑓  ∣  ∃ 𝑛  ∈  ( ω  ∖  { ∅ } ) ( 𝑓  Fn  𝑛  ∧  ( 𝑓 ‘ ∅ )  =   pred ( 𝑌 ,  𝐴 ,  𝑅 )  ∧  ∀ 𝑖  ∈  ω ( suc  𝑖  ∈  𝑛  →  ( 𝑓 ‘ suc  𝑖 )  =  ∪  𝑦  ∈  ( 𝑓 ‘ 𝑖 )  pred ( 𝑦 ,  𝐴 ,  𝑅 ) ) ) }  →  ∪  𝑓  ∈  { 𝑓  ∣  ∃ 𝑛  ∈  ( ω  ∖  { ∅ } ) ( 𝑓  Fn  𝑛  ∧  ( 𝑓 ‘ ∅ )  =   pred ( 𝑋 ,  𝐴 ,  𝑅 )  ∧  ∀ 𝑖  ∈  ω ( suc  𝑖  ∈  𝑛  →  ( 𝑓 ‘ suc  𝑖 )  =  ∪  𝑦  ∈  ( 𝑓 ‘ 𝑖 )  pred ( 𝑦 ,  𝐴 ,  𝑅 ) ) ) } ∪  𝑖  ∈  dom  𝑓 ( 𝑓 ‘ 𝑖 )  =  ∪  𝑓  ∈  { 𝑓  ∣  ∃ 𝑛  ∈  ( ω  ∖  { ∅ } ) ( 𝑓  Fn  𝑛  ∧  ( 𝑓 ‘ ∅ )  =   pred ( 𝑌 ,  𝐴 ,  𝑅 )  ∧  ∀ 𝑖  ∈  ω ( suc  𝑖  ∈  𝑛  →  ( 𝑓 ‘ suc  𝑖 )  =  ∪  𝑦  ∈  ( 𝑓 ‘ 𝑖 )  pred ( 𝑦 ,  𝐴 ,  𝑅 ) ) ) } ∪  𝑖  ∈  dom  𝑓 ( 𝑓 ‘ 𝑖 ) )  | 
						
						
							| 9 | 
							
								5 8
							 | 
							syl | 
							⊢ ( 𝑋  =  𝑌  →  ∪  𝑓  ∈  { 𝑓  ∣  ∃ 𝑛  ∈  ( ω  ∖  { ∅ } ) ( 𝑓  Fn  𝑛  ∧  ( 𝑓 ‘ ∅ )  =   pred ( 𝑋 ,  𝐴 ,  𝑅 )  ∧  ∀ 𝑖  ∈  ω ( suc  𝑖  ∈  𝑛  →  ( 𝑓 ‘ suc  𝑖 )  =  ∪  𝑦  ∈  ( 𝑓 ‘ 𝑖 )  pred ( 𝑦 ,  𝐴 ,  𝑅 ) ) ) } ∪  𝑖  ∈  dom  𝑓 ( 𝑓 ‘ 𝑖 )  =  ∪  𝑓  ∈  { 𝑓  ∣  ∃ 𝑛  ∈  ( ω  ∖  { ∅ } ) ( 𝑓  Fn  𝑛  ∧  ( 𝑓 ‘ ∅ )  =   pred ( 𝑌 ,  𝐴 ,  𝑅 )  ∧  ∀ 𝑖  ∈  ω ( suc  𝑖  ∈  𝑛  →  ( 𝑓 ‘ suc  𝑖 )  =  ∪  𝑦  ∈  ( 𝑓 ‘ 𝑖 )  pred ( 𝑦 ,  𝐴 ,  𝑅 ) ) ) } ∪  𝑖  ∈  dom  𝑓 ( 𝑓 ‘ 𝑖 ) )  | 
						
						
							| 10 | 
							
								
							 | 
							biid | 
							⊢ ( ( 𝑓 ‘ ∅ )  =   pred ( 𝑋 ,  𝐴 ,  𝑅 )  ↔  ( 𝑓 ‘ ∅ )  =   pred ( 𝑋 ,  𝐴 ,  𝑅 ) )  | 
						
						
							| 11 | 
							
								
							 | 
							biid | 
							⊢ ( ∀ 𝑖  ∈  ω ( suc  𝑖  ∈  𝑛  →  ( 𝑓 ‘ suc  𝑖 )  =  ∪  𝑦  ∈  ( 𝑓 ‘ 𝑖 )  pred ( 𝑦 ,  𝐴 ,  𝑅 ) )  ↔  ∀ 𝑖  ∈  ω ( suc  𝑖  ∈  𝑛  →  ( 𝑓 ‘ suc  𝑖 )  =  ∪  𝑦  ∈  ( 𝑓 ‘ 𝑖 )  pred ( 𝑦 ,  𝐴 ,  𝑅 ) ) )  | 
						
						
							| 12 | 
							
								
							 | 
							eqid | 
							⊢ ( ω  ∖  { ∅ } )  =  ( ω  ∖  { ∅ } )  | 
						
						
							| 13 | 
							
								
							 | 
							eqid | 
							⊢ { 𝑓  ∣  ∃ 𝑛  ∈  ( ω  ∖  { ∅ } ) ( 𝑓  Fn  𝑛  ∧  ( 𝑓 ‘ ∅ )  =   pred ( 𝑋 ,  𝐴 ,  𝑅 )  ∧  ∀ 𝑖  ∈  ω ( suc  𝑖  ∈  𝑛  →  ( 𝑓 ‘ suc  𝑖 )  =  ∪  𝑦  ∈  ( 𝑓 ‘ 𝑖 )  pred ( 𝑦 ,  𝐴 ,  𝑅 ) ) ) }  =  { 𝑓  ∣  ∃ 𝑛  ∈  ( ω  ∖  { ∅ } ) ( 𝑓  Fn  𝑛  ∧  ( 𝑓 ‘ ∅ )  =   pred ( 𝑋 ,  𝐴 ,  𝑅 )  ∧  ∀ 𝑖  ∈  ω ( suc  𝑖  ∈  𝑛  →  ( 𝑓 ‘ suc  𝑖 )  =  ∪  𝑦  ∈  ( 𝑓 ‘ 𝑖 )  pred ( 𝑦 ,  𝐴 ,  𝑅 ) ) ) }  | 
						
						
							| 14 | 
							
								10 11 12 13
							 | 
							bnj882 | 
							⊢  trCl ( 𝑋 ,  𝐴 ,  𝑅 )  =  ∪  𝑓  ∈  { 𝑓  ∣  ∃ 𝑛  ∈  ( ω  ∖  { ∅ } ) ( 𝑓  Fn  𝑛  ∧  ( 𝑓 ‘ ∅ )  =   pred ( 𝑋 ,  𝐴 ,  𝑅 )  ∧  ∀ 𝑖  ∈  ω ( suc  𝑖  ∈  𝑛  →  ( 𝑓 ‘ suc  𝑖 )  =  ∪  𝑦  ∈  ( 𝑓 ‘ 𝑖 )  pred ( 𝑦 ,  𝐴 ,  𝑅 ) ) ) } ∪  𝑖  ∈  dom  𝑓 ( 𝑓 ‘ 𝑖 )  | 
						
						
							| 15 | 
							
								
							 | 
							biid | 
							⊢ ( ( 𝑓 ‘ ∅ )  =   pred ( 𝑌 ,  𝐴 ,  𝑅 )  ↔  ( 𝑓 ‘ ∅ )  =   pred ( 𝑌 ,  𝐴 ,  𝑅 ) )  | 
						
						
							| 16 | 
							
								
							 | 
							eqid | 
							⊢ { 𝑓  ∣  ∃ 𝑛  ∈  ( ω  ∖  { ∅ } ) ( 𝑓  Fn  𝑛  ∧  ( 𝑓 ‘ ∅ )  =   pred ( 𝑌 ,  𝐴 ,  𝑅 )  ∧  ∀ 𝑖  ∈  ω ( suc  𝑖  ∈  𝑛  →  ( 𝑓 ‘ suc  𝑖 )  =  ∪  𝑦  ∈  ( 𝑓 ‘ 𝑖 )  pred ( 𝑦 ,  𝐴 ,  𝑅 ) ) ) }  =  { 𝑓  ∣  ∃ 𝑛  ∈  ( ω  ∖  { ∅ } ) ( 𝑓  Fn  𝑛  ∧  ( 𝑓 ‘ ∅ )  =   pred ( 𝑌 ,  𝐴 ,  𝑅 )  ∧  ∀ 𝑖  ∈  ω ( suc  𝑖  ∈  𝑛  →  ( 𝑓 ‘ suc  𝑖 )  =  ∪  𝑦  ∈  ( 𝑓 ‘ 𝑖 )  pred ( 𝑦 ,  𝐴 ,  𝑅 ) ) ) }  | 
						
						
							| 17 | 
							
								15 11 12 16
							 | 
							bnj882 | 
							⊢  trCl ( 𝑌 ,  𝐴 ,  𝑅 )  =  ∪  𝑓  ∈  { 𝑓  ∣  ∃ 𝑛  ∈  ( ω  ∖  { ∅ } ) ( 𝑓  Fn  𝑛  ∧  ( 𝑓 ‘ ∅ )  =   pred ( 𝑌 ,  𝐴 ,  𝑅 )  ∧  ∀ 𝑖  ∈  ω ( suc  𝑖  ∈  𝑛  →  ( 𝑓 ‘ suc  𝑖 )  =  ∪  𝑦  ∈  ( 𝑓 ‘ 𝑖 )  pred ( 𝑦 ,  𝐴 ,  𝑅 ) ) ) } ∪  𝑖  ∈  dom  𝑓 ( 𝑓 ‘ 𝑖 )  | 
						
						
							| 18 | 
							
								9 14 17
							 | 
							3eqtr4g | 
							⊢ ( 𝑋  =  𝑌  →   trCl ( 𝑋 ,  𝐴 ,  𝑅 )  =   trCl ( 𝑌 ,  𝐴 ,  𝑅 ) )  |