Metamath Proof Explorer


Theorem bnj1326

Description: Technical lemma for bnj60 . This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (New usage is discouraged.)

Ref Expression
Hypotheses bnj1326.1 𝐵 = { 𝑑 ∣ ( 𝑑𝐴 ∧ ∀ 𝑥𝑑 pred ( 𝑥 , 𝐴 , 𝑅 ) ⊆ 𝑑 ) }
bnj1326.2 𝑌 = ⟨ 𝑥 , ( 𝑓 ↾ pred ( 𝑥 , 𝐴 , 𝑅 ) ) ⟩
bnj1326.3 𝐶 = { 𝑓 ∣ ∃ 𝑑𝐵 ( 𝑓 Fn 𝑑 ∧ ∀ 𝑥𝑑 ( 𝑓𝑥 ) = ( 𝐺𝑌 ) ) }
bnj1326.4 𝐷 = ( dom 𝑔 ∩ dom )
Assertion bnj1326 ( ( 𝑅 FrSe 𝐴𝑔𝐶𝐶 ) → ( 𝑔𝐷 ) = ( 𝐷 ) )

Proof

Step Hyp Ref Expression
1 bnj1326.1 𝐵 = { 𝑑 ∣ ( 𝑑𝐴 ∧ ∀ 𝑥𝑑 pred ( 𝑥 , 𝐴 , 𝑅 ) ⊆ 𝑑 ) }
2 bnj1326.2 𝑌 = ⟨ 𝑥 , ( 𝑓 ↾ pred ( 𝑥 , 𝐴 , 𝑅 ) ) ⟩
3 bnj1326.3 𝐶 = { 𝑓 ∣ ∃ 𝑑𝐵 ( 𝑓 Fn 𝑑 ∧ ∀ 𝑥𝑑 ( 𝑓𝑥 ) = ( 𝐺𝑌 ) ) }
4 bnj1326.4 𝐷 = ( dom 𝑔 ∩ dom )
5 eleq1w ( 𝑞 = → ( 𝑞𝐶𝐶 ) )
6 5 3anbi3d ( 𝑞 = → ( ( 𝑅 FrSe 𝐴𝑔𝐶𝑞𝐶 ) ↔ ( 𝑅 FrSe 𝐴𝑔𝐶𝐶 ) ) )
7 dmeq ( 𝑞 = → dom 𝑞 = dom )
8 7 ineq2d ( 𝑞 = → ( dom 𝑔 ∩ dom 𝑞 ) = ( dom 𝑔 ∩ dom ) )
9 8 reseq2d ( 𝑞 = → ( 𝑔 ↾ ( dom 𝑔 ∩ dom 𝑞 ) ) = ( 𝑔 ↾ ( dom 𝑔 ∩ dom ) ) )
10 4 reseq2i ( 𝑔𝐷 ) = ( 𝑔 ↾ ( dom 𝑔 ∩ dom ) )
11 9 10 eqtr4di ( 𝑞 = → ( 𝑔 ↾ ( dom 𝑔 ∩ dom 𝑞 ) ) = ( 𝑔𝐷 ) )
12 8 reseq2d ( 𝑞 = → ( 𝑞 ↾ ( dom 𝑔 ∩ dom 𝑞 ) ) = ( 𝑞 ↾ ( dom 𝑔 ∩ dom ) ) )
13 reseq1 ( 𝑞 = → ( 𝑞 ↾ ( dom 𝑔 ∩ dom ) ) = ( ↾ ( dom 𝑔 ∩ dom ) ) )
14 12 13 eqtrd ( 𝑞 = → ( 𝑞 ↾ ( dom 𝑔 ∩ dom 𝑞 ) ) = ( ↾ ( dom 𝑔 ∩ dom ) ) )
15 4 reseq2i ( 𝐷 ) = ( ↾ ( dom 𝑔 ∩ dom ) )
16 14 15 eqtr4di ( 𝑞 = → ( 𝑞 ↾ ( dom 𝑔 ∩ dom 𝑞 ) ) = ( 𝐷 ) )
17 11 16 eqeq12d ( 𝑞 = → ( ( 𝑔 ↾ ( dom 𝑔 ∩ dom 𝑞 ) ) = ( 𝑞 ↾ ( dom 𝑔 ∩ dom 𝑞 ) ) ↔ ( 𝑔𝐷 ) = ( 𝐷 ) ) )
18 6 17 imbi12d ( 𝑞 = → ( ( ( 𝑅 FrSe 𝐴𝑔𝐶𝑞𝐶 ) → ( 𝑔 ↾ ( dom 𝑔 ∩ dom 𝑞 ) ) = ( 𝑞 ↾ ( dom 𝑔 ∩ dom 𝑞 ) ) ) ↔ ( ( 𝑅 FrSe 𝐴𝑔𝐶𝐶 ) → ( 𝑔𝐷 ) = ( 𝐷 ) ) ) )
19 eleq1w ( 𝑝 = 𝑔 → ( 𝑝𝐶𝑔𝐶 ) )
20 19 3anbi2d ( 𝑝 = 𝑔 → ( ( 𝑅 FrSe 𝐴𝑝𝐶𝑞𝐶 ) ↔ ( 𝑅 FrSe 𝐴𝑔𝐶𝑞𝐶 ) ) )
21 dmeq ( 𝑝 = 𝑔 → dom 𝑝 = dom 𝑔 )
22 21 ineq1d ( 𝑝 = 𝑔 → ( dom 𝑝 ∩ dom 𝑞 ) = ( dom 𝑔 ∩ dom 𝑞 ) )
23 22 reseq2d ( 𝑝 = 𝑔 → ( 𝑝 ↾ ( dom 𝑝 ∩ dom 𝑞 ) ) = ( 𝑝 ↾ ( dom 𝑔 ∩ dom 𝑞 ) ) )
24 reseq1 ( 𝑝 = 𝑔 → ( 𝑝 ↾ ( dom 𝑔 ∩ dom 𝑞 ) ) = ( 𝑔 ↾ ( dom 𝑔 ∩ dom 𝑞 ) ) )
25 23 24 eqtrd ( 𝑝 = 𝑔 → ( 𝑝 ↾ ( dom 𝑝 ∩ dom 𝑞 ) ) = ( 𝑔 ↾ ( dom 𝑔 ∩ dom 𝑞 ) ) )
26 22 reseq2d ( 𝑝 = 𝑔 → ( 𝑞 ↾ ( dom 𝑝 ∩ dom 𝑞 ) ) = ( 𝑞 ↾ ( dom 𝑔 ∩ dom 𝑞 ) ) )
27 25 26 eqeq12d ( 𝑝 = 𝑔 → ( ( 𝑝 ↾ ( dom 𝑝 ∩ dom 𝑞 ) ) = ( 𝑞 ↾ ( dom 𝑝 ∩ dom 𝑞 ) ) ↔ ( 𝑔 ↾ ( dom 𝑔 ∩ dom 𝑞 ) ) = ( 𝑞 ↾ ( dom 𝑔 ∩ dom 𝑞 ) ) ) )
28 20 27 imbi12d ( 𝑝 = 𝑔 → ( ( ( 𝑅 FrSe 𝐴𝑝𝐶𝑞𝐶 ) → ( 𝑝 ↾ ( dom 𝑝 ∩ dom 𝑞 ) ) = ( 𝑞 ↾ ( dom 𝑝 ∩ dom 𝑞 ) ) ) ↔ ( ( 𝑅 FrSe 𝐴𝑔𝐶𝑞𝐶 ) → ( 𝑔 ↾ ( dom 𝑔 ∩ dom 𝑞 ) ) = ( 𝑞 ↾ ( dom 𝑔 ∩ dom 𝑞 ) ) ) ) )
29 eqid ( dom 𝑝 ∩ dom 𝑞 ) = ( dom 𝑝 ∩ dom 𝑞 )
30 1 2 3 29 bnj1311 ( ( 𝑅 FrSe 𝐴𝑝𝐶𝑞𝐶 ) → ( 𝑝 ↾ ( dom 𝑝 ∩ dom 𝑞 ) ) = ( 𝑞 ↾ ( dom 𝑝 ∩ dom 𝑞 ) ) )
31 28 30 chvarvv ( ( 𝑅 FrSe 𝐴𝑔𝐶𝑞𝐶 ) → ( 𝑔 ↾ ( dom 𝑔 ∩ dom 𝑞 ) ) = ( 𝑞 ↾ ( dom 𝑔 ∩ dom 𝑞 ) ) )
32 18 31 chvarvv ( ( 𝑅 FrSe 𝐴𝑔𝐶𝐶 ) → ( 𝑔𝐷 ) = ( 𝐷 ) )