Metamath Proof Explorer


Theorem bnj133

Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (New usage is discouraged.)

Ref Expression
Hypotheses bnj133.1 ( 𝜑 ↔ ∃ 𝑥 𝜓 )
bnj133.2 ( 𝜒𝜓 )
Assertion bnj133 ( 𝜑 ↔ ∃ 𝑥 𝜒 )

Proof

Step Hyp Ref Expression
1 bnj133.1 ( 𝜑 ↔ ∃ 𝑥 𝜓 )
2 bnj133.2 ( 𝜒𝜓 )
3 2 exbii ( ∃ 𝑥 𝜒 ↔ ∃ 𝑥 𝜓 )
4 1 3 bitr4i ( 𝜑 ↔ ∃ 𝑥 𝜒 )