Metamath Proof Explorer


Theorem bnj1345

Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (New usage is discouraged.)

Ref Expression
Hypotheses bnj1345.1 ( 𝜑 → ∃ 𝑥 ( 𝜓𝜒 ) )
bnj1345.2 ( 𝜃 ↔ ( 𝜑𝜓𝜒 ) )
bnj1345.3 ( 𝜑 → ∀ 𝑥 𝜑 )
Assertion bnj1345 ( 𝜑 → ∃ 𝑥 𝜃 )

Proof

Step Hyp Ref Expression
1 bnj1345.1 ( 𝜑 → ∃ 𝑥 ( 𝜓𝜒 ) )
2 bnj1345.2 ( 𝜃 ↔ ( 𝜑𝜓𝜒 ) )
3 bnj1345.3 ( 𝜑 → ∀ 𝑥 𝜑 )
4 1 3 bnj1275 ( 𝜑 → ∃ 𝑥 ( 𝜑𝜓𝜒 ) )
5 4 2 bnj1198 ( 𝜑 → ∃ 𝑥 𝜃 )