Step |
Hyp |
Ref |
Expression |
1 |
|
bnj1366.1 |
⊢ ( 𝜓 ↔ ( 𝐴 ∈ V ∧ ∀ 𝑥 ∈ 𝐴 ∃! 𝑦 𝜑 ∧ 𝐵 = { 𝑦 ∣ ∃ 𝑥 ∈ 𝐴 𝜑 } ) ) |
2 |
1
|
simp3bi |
⊢ ( 𝜓 → 𝐵 = { 𝑦 ∣ ∃ 𝑥 ∈ 𝐴 𝜑 } ) |
3 |
1
|
simp2bi |
⊢ ( 𝜓 → ∀ 𝑥 ∈ 𝐴 ∃! 𝑦 𝜑 ) |
4 |
|
nfcv |
⊢ Ⅎ 𝑦 𝐴 |
5 |
|
nfeu1 |
⊢ Ⅎ 𝑦 ∃! 𝑦 𝜑 |
6 |
4 5
|
nfralw |
⊢ Ⅎ 𝑦 ∀ 𝑥 ∈ 𝐴 ∃! 𝑦 𝜑 |
7 |
|
nfra1 |
⊢ Ⅎ 𝑥 ∀ 𝑥 ∈ 𝐴 ∃! 𝑦 𝜑 |
8 |
|
rspa |
⊢ ( ( ∀ 𝑥 ∈ 𝐴 ∃! 𝑦 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ∃! 𝑦 𝜑 ) |
9 |
|
iota1 |
⊢ ( ∃! 𝑦 𝜑 → ( 𝜑 ↔ ( ℩ 𝑦 𝜑 ) = 𝑦 ) ) |
10 |
|
eqcom |
⊢ ( ( ℩ 𝑦 𝜑 ) = 𝑦 ↔ 𝑦 = ( ℩ 𝑦 𝜑 ) ) |
11 |
9 10
|
bitrdi |
⊢ ( ∃! 𝑦 𝜑 → ( 𝜑 ↔ 𝑦 = ( ℩ 𝑦 𝜑 ) ) ) |
12 |
8 11
|
syl |
⊢ ( ( ∀ 𝑥 ∈ 𝐴 ∃! 𝑦 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( 𝜑 ↔ 𝑦 = ( ℩ 𝑦 𝜑 ) ) ) |
13 |
7 12
|
rexbida |
⊢ ( ∀ 𝑥 ∈ 𝐴 ∃! 𝑦 𝜑 → ( ∃ 𝑥 ∈ 𝐴 𝜑 ↔ ∃ 𝑥 ∈ 𝐴 𝑦 = ( ℩ 𝑦 𝜑 ) ) ) |
14 |
|
abid |
⊢ ( 𝑦 ∈ { 𝑦 ∣ ∃ 𝑥 ∈ 𝐴 𝜑 } ↔ ∃ 𝑥 ∈ 𝐴 𝜑 ) |
15 |
|
eqid |
⊢ ( 𝑥 ∈ 𝐴 ↦ ( ℩ 𝑦 𝜑 ) ) = ( 𝑥 ∈ 𝐴 ↦ ( ℩ 𝑦 𝜑 ) ) |
16 |
|
iotaex |
⊢ ( ℩ 𝑦 𝜑 ) ∈ V |
17 |
15 16
|
elrnmpti |
⊢ ( 𝑦 ∈ ran ( 𝑥 ∈ 𝐴 ↦ ( ℩ 𝑦 𝜑 ) ) ↔ ∃ 𝑥 ∈ 𝐴 𝑦 = ( ℩ 𝑦 𝜑 ) ) |
18 |
13 14 17
|
3bitr4g |
⊢ ( ∀ 𝑥 ∈ 𝐴 ∃! 𝑦 𝜑 → ( 𝑦 ∈ { 𝑦 ∣ ∃ 𝑥 ∈ 𝐴 𝜑 } ↔ 𝑦 ∈ ran ( 𝑥 ∈ 𝐴 ↦ ( ℩ 𝑦 𝜑 ) ) ) ) |
19 |
6 18
|
alrimi |
⊢ ( ∀ 𝑥 ∈ 𝐴 ∃! 𝑦 𝜑 → ∀ 𝑦 ( 𝑦 ∈ { 𝑦 ∣ ∃ 𝑥 ∈ 𝐴 𝜑 } ↔ 𝑦 ∈ ran ( 𝑥 ∈ 𝐴 ↦ ( ℩ 𝑦 𝜑 ) ) ) ) |
20 |
3 19
|
syl |
⊢ ( 𝜓 → ∀ 𝑦 ( 𝑦 ∈ { 𝑦 ∣ ∃ 𝑥 ∈ 𝐴 𝜑 } ↔ 𝑦 ∈ ran ( 𝑥 ∈ 𝐴 ↦ ( ℩ 𝑦 𝜑 ) ) ) ) |
21 |
|
nfab1 |
⊢ Ⅎ 𝑦 { 𝑦 ∣ ∃ 𝑥 ∈ 𝐴 𝜑 } |
22 |
|
nfiota1 |
⊢ Ⅎ 𝑦 ( ℩ 𝑦 𝜑 ) |
23 |
4 22
|
nfmpt |
⊢ Ⅎ 𝑦 ( 𝑥 ∈ 𝐴 ↦ ( ℩ 𝑦 𝜑 ) ) |
24 |
23
|
nfrn |
⊢ Ⅎ 𝑦 ran ( 𝑥 ∈ 𝐴 ↦ ( ℩ 𝑦 𝜑 ) ) |
25 |
21 24
|
cleqf |
⊢ ( { 𝑦 ∣ ∃ 𝑥 ∈ 𝐴 𝜑 } = ran ( 𝑥 ∈ 𝐴 ↦ ( ℩ 𝑦 𝜑 ) ) ↔ ∀ 𝑦 ( 𝑦 ∈ { 𝑦 ∣ ∃ 𝑥 ∈ 𝐴 𝜑 } ↔ 𝑦 ∈ ran ( 𝑥 ∈ 𝐴 ↦ ( ℩ 𝑦 𝜑 ) ) ) ) |
26 |
20 25
|
sylibr |
⊢ ( 𝜓 → { 𝑦 ∣ ∃ 𝑥 ∈ 𝐴 𝜑 } = ran ( 𝑥 ∈ 𝐴 ↦ ( ℩ 𝑦 𝜑 ) ) ) |
27 |
2 26
|
eqtrd |
⊢ ( 𝜓 → 𝐵 = ran ( 𝑥 ∈ 𝐴 ↦ ( ℩ 𝑦 𝜑 ) ) ) |
28 |
1
|
simp1bi |
⊢ ( 𝜓 → 𝐴 ∈ V ) |
29 |
|
mptexg |
⊢ ( 𝐴 ∈ V → ( 𝑥 ∈ 𝐴 ↦ ( ℩ 𝑦 𝜑 ) ) ∈ V ) |
30 |
|
rnexg |
⊢ ( ( 𝑥 ∈ 𝐴 ↦ ( ℩ 𝑦 𝜑 ) ) ∈ V → ran ( 𝑥 ∈ 𝐴 ↦ ( ℩ 𝑦 𝜑 ) ) ∈ V ) |
31 |
28 29 30
|
3syl |
⊢ ( 𝜓 → ran ( 𝑥 ∈ 𝐴 ↦ ( ℩ 𝑦 𝜑 ) ) ∈ V ) |
32 |
27 31
|
eqeltrd |
⊢ ( 𝜓 → 𝐵 ∈ V ) |