| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							bnj1366.1 | 
							⊢ ( 𝜓  ↔  ( 𝐴  ∈  V  ∧  ∀ 𝑥  ∈  𝐴 ∃! 𝑦 𝜑  ∧  𝐵  =  { 𝑦  ∣  ∃ 𝑥  ∈  𝐴 𝜑 } ) )  | 
						
						
							| 2 | 
							
								1
							 | 
							simp3bi | 
							⊢ ( 𝜓  →  𝐵  =  { 𝑦  ∣  ∃ 𝑥  ∈  𝐴 𝜑 } )  | 
						
						
							| 3 | 
							
								1
							 | 
							simp2bi | 
							⊢ ( 𝜓  →  ∀ 𝑥  ∈  𝐴 ∃! 𝑦 𝜑 )  | 
						
						
							| 4 | 
							
								
							 | 
							nfcv | 
							⊢ Ⅎ 𝑦 𝐴  | 
						
						
							| 5 | 
							
								
							 | 
							nfeu1 | 
							⊢ Ⅎ 𝑦 ∃! 𝑦 𝜑  | 
						
						
							| 6 | 
							
								4 5
							 | 
							nfralw | 
							⊢ Ⅎ 𝑦 ∀ 𝑥  ∈  𝐴 ∃! 𝑦 𝜑  | 
						
						
							| 7 | 
							
								
							 | 
							nfra1 | 
							⊢ Ⅎ 𝑥 ∀ 𝑥  ∈  𝐴 ∃! 𝑦 𝜑  | 
						
						
							| 8 | 
							
								
							 | 
							rspa | 
							⊢ ( ( ∀ 𝑥  ∈  𝐴 ∃! 𝑦 𝜑  ∧  𝑥  ∈  𝐴 )  →  ∃! 𝑦 𝜑 )  | 
						
						
							| 9 | 
							
								
							 | 
							iota1 | 
							⊢ ( ∃! 𝑦 𝜑  →  ( 𝜑  ↔  ( ℩ 𝑦 𝜑 )  =  𝑦 ) )  | 
						
						
							| 10 | 
							
								
							 | 
							eqcom | 
							⊢ ( ( ℩ 𝑦 𝜑 )  =  𝑦  ↔  𝑦  =  ( ℩ 𝑦 𝜑 ) )  | 
						
						
							| 11 | 
							
								9 10
							 | 
							bitrdi | 
							⊢ ( ∃! 𝑦 𝜑  →  ( 𝜑  ↔  𝑦  =  ( ℩ 𝑦 𝜑 ) ) )  | 
						
						
							| 12 | 
							
								8 11
							 | 
							syl | 
							⊢ ( ( ∀ 𝑥  ∈  𝐴 ∃! 𝑦 𝜑  ∧  𝑥  ∈  𝐴 )  →  ( 𝜑  ↔  𝑦  =  ( ℩ 𝑦 𝜑 ) ) )  | 
						
						
							| 13 | 
							
								7 12
							 | 
							rexbida | 
							⊢ ( ∀ 𝑥  ∈  𝐴 ∃! 𝑦 𝜑  →  ( ∃ 𝑥  ∈  𝐴 𝜑  ↔  ∃ 𝑥  ∈  𝐴 𝑦  =  ( ℩ 𝑦 𝜑 ) ) )  | 
						
						
							| 14 | 
							
								
							 | 
							abid | 
							⊢ ( 𝑦  ∈  { 𝑦  ∣  ∃ 𝑥  ∈  𝐴 𝜑 }  ↔  ∃ 𝑥  ∈  𝐴 𝜑 )  | 
						
						
							| 15 | 
							
								
							 | 
							eqid | 
							⊢ ( 𝑥  ∈  𝐴  ↦  ( ℩ 𝑦 𝜑 ) )  =  ( 𝑥  ∈  𝐴  ↦  ( ℩ 𝑦 𝜑 ) )  | 
						
						
							| 16 | 
							
								
							 | 
							iotaex | 
							⊢ ( ℩ 𝑦 𝜑 )  ∈  V  | 
						
						
							| 17 | 
							
								15 16
							 | 
							elrnmpti | 
							⊢ ( 𝑦  ∈  ran  ( 𝑥  ∈  𝐴  ↦  ( ℩ 𝑦 𝜑 ) )  ↔  ∃ 𝑥  ∈  𝐴 𝑦  =  ( ℩ 𝑦 𝜑 ) )  | 
						
						
							| 18 | 
							
								13 14 17
							 | 
							3bitr4g | 
							⊢ ( ∀ 𝑥  ∈  𝐴 ∃! 𝑦 𝜑  →  ( 𝑦  ∈  { 𝑦  ∣  ∃ 𝑥  ∈  𝐴 𝜑 }  ↔  𝑦  ∈  ran  ( 𝑥  ∈  𝐴  ↦  ( ℩ 𝑦 𝜑 ) ) ) )  | 
						
						
							| 19 | 
							
								6 18
							 | 
							alrimi | 
							⊢ ( ∀ 𝑥  ∈  𝐴 ∃! 𝑦 𝜑  →  ∀ 𝑦 ( 𝑦  ∈  { 𝑦  ∣  ∃ 𝑥  ∈  𝐴 𝜑 }  ↔  𝑦  ∈  ran  ( 𝑥  ∈  𝐴  ↦  ( ℩ 𝑦 𝜑 ) ) ) )  | 
						
						
							| 20 | 
							
								3 19
							 | 
							syl | 
							⊢ ( 𝜓  →  ∀ 𝑦 ( 𝑦  ∈  { 𝑦  ∣  ∃ 𝑥  ∈  𝐴 𝜑 }  ↔  𝑦  ∈  ran  ( 𝑥  ∈  𝐴  ↦  ( ℩ 𝑦 𝜑 ) ) ) )  | 
						
						
							| 21 | 
							
								
							 | 
							nfab1 | 
							⊢ Ⅎ 𝑦 { 𝑦  ∣  ∃ 𝑥  ∈  𝐴 𝜑 }  | 
						
						
							| 22 | 
							
								
							 | 
							nfiota1 | 
							⊢ Ⅎ 𝑦 ( ℩ 𝑦 𝜑 )  | 
						
						
							| 23 | 
							
								4 22
							 | 
							nfmpt | 
							⊢ Ⅎ 𝑦 ( 𝑥  ∈  𝐴  ↦  ( ℩ 𝑦 𝜑 ) )  | 
						
						
							| 24 | 
							
								23
							 | 
							nfrn | 
							⊢ Ⅎ 𝑦 ran  ( 𝑥  ∈  𝐴  ↦  ( ℩ 𝑦 𝜑 ) )  | 
						
						
							| 25 | 
							
								21 24
							 | 
							cleqf | 
							⊢ ( { 𝑦  ∣  ∃ 𝑥  ∈  𝐴 𝜑 }  =  ran  ( 𝑥  ∈  𝐴  ↦  ( ℩ 𝑦 𝜑 ) )  ↔  ∀ 𝑦 ( 𝑦  ∈  { 𝑦  ∣  ∃ 𝑥  ∈  𝐴 𝜑 }  ↔  𝑦  ∈  ran  ( 𝑥  ∈  𝐴  ↦  ( ℩ 𝑦 𝜑 ) ) ) )  | 
						
						
							| 26 | 
							
								20 25
							 | 
							sylibr | 
							⊢ ( 𝜓  →  { 𝑦  ∣  ∃ 𝑥  ∈  𝐴 𝜑 }  =  ran  ( 𝑥  ∈  𝐴  ↦  ( ℩ 𝑦 𝜑 ) ) )  | 
						
						
							| 27 | 
							
								2 26
							 | 
							eqtrd | 
							⊢ ( 𝜓  →  𝐵  =  ran  ( 𝑥  ∈  𝐴  ↦  ( ℩ 𝑦 𝜑 ) ) )  | 
						
						
							| 28 | 
							
								1
							 | 
							simp1bi | 
							⊢ ( 𝜓  →  𝐴  ∈  V )  | 
						
						
							| 29 | 
							
								
							 | 
							mptexg | 
							⊢ ( 𝐴  ∈  V  →  ( 𝑥  ∈  𝐴  ↦  ( ℩ 𝑦 𝜑 ) )  ∈  V )  | 
						
						
							| 30 | 
							
								
							 | 
							rnexg | 
							⊢ ( ( 𝑥  ∈  𝐴  ↦  ( ℩ 𝑦 𝜑 ) )  ∈  V  →  ran  ( 𝑥  ∈  𝐴  ↦  ( ℩ 𝑦 𝜑 ) )  ∈  V )  | 
						
						
							| 31 | 
							
								28 29 30
							 | 
							3syl | 
							⊢ ( 𝜓  →  ran  ( 𝑥  ∈  𝐴  ↦  ( ℩ 𝑦 𝜑 ) )  ∈  V )  | 
						
						
							| 32 | 
							
								27 31
							 | 
							eqeltrd | 
							⊢ ( 𝜓  →  𝐵  ∈  V )  |