Step |
Hyp |
Ref |
Expression |
1 |
|
bnj1379.1 |
⊢ ( 𝜑 ↔ ∀ 𝑓 ∈ 𝐴 Fun 𝑓 ) |
2 |
|
bnj1379.2 |
⊢ 𝐷 = ( dom 𝑓 ∩ dom 𝑔 ) |
3 |
|
bnj1379.3 |
⊢ ( 𝜓 ↔ ( 𝜑 ∧ ∀ 𝑓 ∈ 𝐴 ∀ 𝑔 ∈ 𝐴 ( 𝑓 ↾ 𝐷 ) = ( 𝑔 ↾ 𝐷 ) ) ) |
4 |
|
bnj1379.5 |
⊢ ( 𝜒 ↔ ( 𝜓 ∧ 〈 𝑥 , 𝑦 〉 ∈ ∪ 𝐴 ∧ 〈 𝑥 , 𝑧 〉 ∈ ∪ 𝐴 ) ) |
5 |
|
bnj1379.6 |
⊢ ( 𝜃 ↔ ( 𝜒 ∧ 𝑓 ∈ 𝐴 ∧ 〈 𝑥 , 𝑦 〉 ∈ 𝑓 ) ) |
6 |
|
bnj1379.7 |
⊢ ( 𝜏 ↔ ( 𝜃 ∧ 𝑔 ∈ 𝐴 ∧ 〈 𝑥 , 𝑧 〉 ∈ 𝑔 ) ) |
7 |
1
|
bnj1095 |
⊢ ( 𝜑 → ∀ 𝑓 𝜑 ) |
8 |
7
|
nf5i |
⊢ Ⅎ 𝑓 𝜑 |
9 |
|
nfra1 |
⊢ Ⅎ 𝑓 ∀ 𝑓 ∈ 𝐴 ∀ 𝑔 ∈ 𝐴 ( 𝑓 ↾ 𝐷 ) = ( 𝑔 ↾ 𝐷 ) |
10 |
8 9
|
nfan |
⊢ Ⅎ 𝑓 ( 𝜑 ∧ ∀ 𝑓 ∈ 𝐴 ∀ 𝑔 ∈ 𝐴 ( 𝑓 ↾ 𝐷 ) = ( 𝑔 ↾ 𝐷 ) ) |
11 |
3 10
|
nfxfr |
⊢ Ⅎ 𝑓 𝜓 |
12 |
1
|
bnj946 |
⊢ ( 𝜑 ↔ ∀ 𝑓 ( 𝑓 ∈ 𝐴 → Fun 𝑓 ) ) |
13 |
12
|
biimpi |
⊢ ( 𝜑 → ∀ 𝑓 ( 𝑓 ∈ 𝐴 → Fun 𝑓 ) ) |
14 |
13
|
19.21bi |
⊢ ( 𝜑 → ( 𝑓 ∈ 𝐴 → Fun 𝑓 ) ) |
15 |
3 14
|
bnj832 |
⊢ ( 𝜓 → ( 𝑓 ∈ 𝐴 → Fun 𝑓 ) ) |
16 |
|
funrel |
⊢ ( Fun 𝑓 → Rel 𝑓 ) |
17 |
15 16
|
syl6 |
⊢ ( 𝜓 → ( 𝑓 ∈ 𝐴 → Rel 𝑓 ) ) |
18 |
11 17
|
ralrimi |
⊢ ( 𝜓 → ∀ 𝑓 ∈ 𝐴 Rel 𝑓 ) |
19 |
|
reluni |
⊢ ( Rel ∪ 𝐴 ↔ ∀ 𝑓 ∈ 𝐴 Rel 𝑓 ) |
20 |
18 19
|
sylibr |
⊢ ( 𝜓 → Rel ∪ 𝐴 ) |
21 |
|
eluni2 |
⊢ ( 〈 𝑥 , 𝑦 〉 ∈ ∪ 𝐴 ↔ ∃ 𝑓 ∈ 𝐴 〈 𝑥 , 𝑦 〉 ∈ 𝑓 ) |
22 |
21
|
biimpi |
⊢ ( 〈 𝑥 , 𝑦 〉 ∈ ∪ 𝐴 → ∃ 𝑓 ∈ 𝐴 〈 𝑥 , 𝑦 〉 ∈ 𝑓 ) |
23 |
22
|
bnj1196 |
⊢ ( 〈 𝑥 , 𝑦 〉 ∈ ∪ 𝐴 → ∃ 𝑓 ( 𝑓 ∈ 𝐴 ∧ 〈 𝑥 , 𝑦 〉 ∈ 𝑓 ) ) |
24 |
4 23
|
bnj836 |
⊢ ( 𝜒 → ∃ 𝑓 ( 𝑓 ∈ 𝐴 ∧ 〈 𝑥 , 𝑦 〉 ∈ 𝑓 ) ) |
25 |
|
nfv |
⊢ Ⅎ 𝑓 〈 𝑥 , 𝑦 〉 ∈ ∪ 𝐴 |
26 |
|
nfv |
⊢ Ⅎ 𝑓 〈 𝑥 , 𝑧 〉 ∈ ∪ 𝐴 |
27 |
11 25 26
|
nf3an |
⊢ Ⅎ 𝑓 ( 𝜓 ∧ 〈 𝑥 , 𝑦 〉 ∈ ∪ 𝐴 ∧ 〈 𝑥 , 𝑧 〉 ∈ ∪ 𝐴 ) |
28 |
4 27
|
nfxfr |
⊢ Ⅎ 𝑓 𝜒 |
29 |
28
|
nf5ri |
⊢ ( 𝜒 → ∀ 𝑓 𝜒 ) |
30 |
24 5 29
|
bnj1345 |
⊢ ( 𝜒 → ∃ 𝑓 𝜃 ) |
31 |
4
|
simp3bi |
⊢ ( 𝜒 → 〈 𝑥 , 𝑧 〉 ∈ ∪ 𝐴 ) |
32 |
5 31
|
bnj835 |
⊢ ( 𝜃 → 〈 𝑥 , 𝑧 〉 ∈ ∪ 𝐴 ) |
33 |
|
eluni2 |
⊢ ( 〈 𝑥 , 𝑧 〉 ∈ ∪ 𝐴 ↔ ∃ 𝑔 ∈ 𝐴 〈 𝑥 , 𝑧 〉 ∈ 𝑔 ) |
34 |
33
|
biimpi |
⊢ ( 〈 𝑥 , 𝑧 〉 ∈ ∪ 𝐴 → ∃ 𝑔 ∈ 𝐴 〈 𝑥 , 𝑧 〉 ∈ 𝑔 ) |
35 |
34
|
bnj1196 |
⊢ ( 〈 𝑥 , 𝑧 〉 ∈ ∪ 𝐴 → ∃ 𝑔 ( 𝑔 ∈ 𝐴 ∧ 〈 𝑥 , 𝑧 〉 ∈ 𝑔 ) ) |
36 |
32 35
|
syl |
⊢ ( 𝜃 → ∃ 𝑔 ( 𝑔 ∈ 𝐴 ∧ 〈 𝑥 , 𝑧 〉 ∈ 𝑔 ) ) |
37 |
|
nfv |
⊢ Ⅎ 𝑔 𝜑 |
38 |
|
nfra2w |
⊢ Ⅎ 𝑔 ∀ 𝑓 ∈ 𝐴 ∀ 𝑔 ∈ 𝐴 ( 𝑓 ↾ 𝐷 ) = ( 𝑔 ↾ 𝐷 ) |
39 |
37 38
|
nfan |
⊢ Ⅎ 𝑔 ( 𝜑 ∧ ∀ 𝑓 ∈ 𝐴 ∀ 𝑔 ∈ 𝐴 ( 𝑓 ↾ 𝐷 ) = ( 𝑔 ↾ 𝐷 ) ) |
40 |
3 39
|
nfxfr |
⊢ Ⅎ 𝑔 𝜓 |
41 |
|
nfv |
⊢ Ⅎ 𝑔 〈 𝑥 , 𝑦 〉 ∈ ∪ 𝐴 |
42 |
|
nfv |
⊢ Ⅎ 𝑔 〈 𝑥 , 𝑧 〉 ∈ ∪ 𝐴 |
43 |
40 41 42
|
nf3an |
⊢ Ⅎ 𝑔 ( 𝜓 ∧ 〈 𝑥 , 𝑦 〉 ∈ ∪ 𝐴 ∧ 〈 𝑥 , 𝑧 〉 ∈ ∪ 𝐴 ) |
44 |
4 43
|
nfxfr |
⊢ Ⅎ 𝑔 𝜒 |
45 |
|
nfv |
⊢ Ⅎ 𝑔 𝑓 ∈ 𝐴 |
46 |
|
nfv |
⊢ Ⅎ 𝑔 〈 𝑥 , 𝑦 〉 ∈ 𝑓 |
47 |
44 45 46
|
nf3an |
⊢ Ⅎ 𝑔 ( 𝜒 ∧ 𝑓 ∈ 𝐴 ∧ 〈 𝑥 , 𝑦 〉 ∈ 𝑓 ) |
48 |
5 47
|
nfxfr |
⊢ Ⅎ 𝑔 𝜃 |
49 |
48
|
nf5ri |
⊢ ( 𝜃 → ∀ 𝑔 𝜃 ) |
50 |
36 6 49
|
bnj1345 |
⊢ ( 𝜃 → ∃ 𝑔 𝜏 ) |
51 |
3
|
simprbi |
⊢ ( 𝜓 → ∀ 𝑓 ∈ 𝐴 ∀ 𝑔 ∈ 𝐴 ( 𝑓 ↾ 𝐷 ) = ( 𝑔 ↾ 𝐷 ) ) |
52 |
4 51
|
bnj835 |
⊢ ( 𝜒 → ∀ 𝑓 ∈ 𝐴 ∀ 𝑔 ∈ 𝐴 ( 𝑓 ↾ 𝐷 ) = ( 𝑔 ↾ 𝐷 ) ) |
53 |
5 52
|
bnj835 |
⊢ ( 𝜃 → ∀ 𝑓 ∈ 𝐴 ∀ 𝑔 ∈ 𝐴 ( 𝑓 ↾ 𝐷 ) = ( 𝑔 ↾ 𝐷 ) ) |
54 |
6 53
|
bnj835 |
⊢ ( 𝜏 → ∀ 𝑓 ∈ 𝐴 ∀ 𝑔 ∈ 𝐴 ( 𝑓 ↾ 𝐷 ) = ( 𝑔 ↾ 𝐷 ) ) |
55 |
5 6
|
bnj1219 |
⊢ ( 𝜏 → 𝑓 ∈ 𝐴 ) |
56 |
54 55
|
bnj1294 |
⊢ ( 𝜏 → ∀ 𝑔 ∈ 𝐴 ( 𝑓 ↾ 𝐷 ) = ( 𝑔 ↾ 𝐷 ) ) |
57 |
6
|
simp2bi |
⊢ ( 𝜏 → 𝑔 ∈ 𝐴 ) |
58 |
56 57
|
bnj1294 |
⊢ ( 𝜏 → ( 𝑓 ↾ 𝐷 ) = ( 𝑔 ↾ 𝐷 ) ) |
59 |
58
|
fveq1d |
⊢ ( 𝜏 → ( ( 𝑓 ↾ 𝐷 ) ‘ 𝑥 ) = ( ( 𝑔 ↾ 𝐷 ) ‘ 𝑥 ) ) |
60 |
5
|
simp3bi |
⊢ ( 𝜃 → 〈 𝑥 , 𝑦 〉 ∈ 𝑓 ) |
61 |
6 60
|
bnj835 |
⊢ ( 𝜏 → 〈 𝑥 , 𝑦 〉 ∈ 𝑓 ) |
62 |
|
vex |
⊢ 𝑥 ∈ V |
63 |
|
vex |
⊢ 𝑦 ∈ V |
64 |
62 63
|
opeldm |
⊢ ( 〈 𝑥 , 𝑦 〉 ∈ 𝑓 → 𝑥 ∈ dom 𝑓 ) |
65 |
61 64
|
syl |
⊢ ( 𝜏 → 𝑥 ∈ dom 𝑓 ) |
66 |
|
vex |
⊢ 𝑧 ∈ V |
67 |
62 66
|
opeldm |
⊢ ( 〈 𝑥 , 𝑧 〉 ∈ 𝑔 → 𝑥 ∈ dom 𝑔 ) |
68 |
6 67
|
bnj837 |
⊢ ( 𝜏 → 𝑥 ∈ dom 𝑔 ) |
69 |
65 68
|
elind |
⊢ ( 𝜏 → 𝑥 ∈ ( dom 𝑓 ∩ dom 𝑔 ) ) |
70 |
69 2
|
eleqtrrdi |
⊢ ( 𝜏 → 𝑥 ∈ 𝐷 ) |
71 |
70
|
fvresd |
⊢ ( 𝜏 → ( ( 𝑓 ↾ 𝐷 ) ‘ 𝑥 ) = ( 𝑓 ‘ 𝑥 ) ) |
72 |
70
|
fvresd |
⊢ ( 𝜏 → ( ( 𝑔 ↾ 𝐷 ) ‘ 𝑥 ) = ( 𝑔 ‘ 𝑥 ) ) |
73 |
59 71 72
|
3eqtr3d |
⊢ ( 𝜏 → ( 𝑓 ‘ 𝑥 ) = ( 𝑔 ‘ 𝑥 ) ) |
74 |
1
|
biimpi |
⊢ ( 𝜑 → ∀ 𝑓 ∈ 𝐴 Fun 𝑓 ) |
75 |
3 74
|
bnj832 |
⊢ ( 𝜓 → ∀ 𝑓 ∈ 𝐴 Fun 𝑓 ) |
76 |
4 75
|
bnj835 |
⊢ ( 𝜒 → ∀ 𝑓 ∈ 𝐴 Fun 𝑓 ) |
77 |
5 76
|
bnj835 |
⊢ ( 𝜃 → ∀ 𝑓 ∈ 𝐴 Fun 𝑓 ) |
78 |
6 77
|
bnj835 |
⊢ ( 𝜏 → ∀ 𝑓 ∈ 𝐴 Fun 𝑓 ) |
79 |
78 55
|
bnj1294 |
⊢ ( 𝜏 → Fun 𝑓 ) |
80 |
|
funopfv |
⊢ ( Fun 𝑓 → ( 〈 𝑥 , 𝑦 〉 ∈ 𝑓 → ( 𝑓 ‘ 𝑥 ) = 𝑦 ) ) |
81 |
79 61 80
|
sylc |
⊢ ( 𝜏 → ( 𝑓 ‘ 𝑥 ) = 𝑦 ) |
82 |
|
funeq |
⊢ ( 𝑓 = 𝑔 → ( Fun 𝑓 ↔ Fun 𝑔 ) ) |
83 |
82 78 57
|
rspcdva |
⊢ ( 𝜏 → Fun 𝑔 ) |
84 |
6
|
simp3bi |
⊢ ( 𝜏 → 〈 𝑥 , 𝑧 〉 ∈ 𝑔 ) |
85 |
|
funopfv |
⊢ ( Fun 𝑔 → ( 〈 𝑥 , 𝑧 〉 ∈ 𝑔 → ( 𝑔 ‘ 𝑥 ) = 𝑧 ) ) |
86 |
83 84 85
|
sylc |
⊢ ( 𝜏 → ( 𝑔 ‘ 𝑥 ) = 𝑧 ) |
87 |
73 81 86
|
3eqtr3d |
⊢ ( 𝜏 → 𝑦 = 𝑧 ) |
88 |
50 87
|
bnj593 |
⊢ ( 𝜃 → ∃ 𝑔 𝑦 = 𝑧 ) |
89 |
88
|
bnj937 |
⊢ ( 𝜃 → 𝑦 = 𝑧 ) |
90 |
30 89
|
bnj593 |
⊢ ( 𝜒 → ∃ 𝑓 𝑦 = 𝑧 ) |
91 |
90
|
bnj937 |
⊢ ( 𝜒 → 𝑦 = 𝑧 ) |
92 |
4 91
|
sylbir |
⊢ ( ( 𝜓 ∧ 〈 𝑥 , 𝑦 〉 ∈ ∪ 𝐴 ∧ 〈 𝑥 , 𝑧 〉 ∈ ∪ 𝐴 ) → 𝑦 = 𝑧 ) |
93 |
92
|
3expib |
⊢ ( 𝜓 → ( ( 〈 𝑥 , 𝑦 〉 ∈ ∪ 𝐴 ∧ 〈 𝑥 , 𝑧 〉 ∈ ∪ 𝐴 ) → 𝑦 = 𝑧 ) ) |
94 |
93
|
alrimivv |
⊢ ( 𝜓 → ∀ 𝑦 ∀ 𝑧 ( ( 〈 𝑥 , 𝑦 〉 ∈ ∪ 𝐴 ∧ 〈 𝑥 , 𝑧 〉 ∈ ∪ 𝐴 ) → 𝑦 = 𝑧 ) ) |
95 |
94
|
alrimiv |
⊢ ( 𝜓 → ∀ 𝑥 ∀ 𝑦 ∀ 𝑧 ( ( 〈 𝑥 , 𝑦 〉 ∈ ∪ 𝐴 ∧ 〈 𝑥 , 𝑧 〉 ∈ ∪ 𝐴 ) → 𝑦 = 𝑧 ) ) |
96 |
|
dffun4 |
⊢ ( Fun ∪ 𝐴 ↔ ( Rel ∪ 𝐴 ∧ ∀ 𝑥 ∀ 𝑦 ∀ 𝑧 ( ( 〈 𝑥 , 𝑦 〉 ∈ ∪ 𝐴 ∧ 〈 𝑥 , 𝑧 〉 ∈ ∪ 𝐴 ) → 𝑦 = 𝑧 ) ) ) |
97 |
20 95 96
|
sylanbrc |
⊢ ( 𝜓 → Fun ∪ 𝐴 ) |