| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							bnj1379.1 | 
							⊢ ( 𝜑  ↔  ∀ 𝑓  ∈  𝐴 Fun  𝑓 )  | 
						
						
							| 2 | 
							
								
							 | 
							bnj1379.2 | 
							⊢ 𝐷  =  ( dom  𝑓  ∩  dom  𝑔 )  | 
						
						
							| 3 | 
							
								
							 | 
							bnj1379.3 | 
							⊢ ( 𝜓  ↔  ( 𝜑  ∧  ∀ 𝑓  ∈  𝐴 ∀ 𝑔  ∈  𝐴 ( 𝑓  ↾  𝐷 )  =  ( 𝑔  ↾  𝐷 ) ) )  | 
						
						
							| 4 | 
							
								
							 | 
							bnj1379.5 | 
							⊢ ( 𝜒  ↔  ( 𝜓  ∧  〈 𝑥 ,  𝑦 〉  ∈  ∪  𝐴  ∧  〈 𝑥 ,  𝑧 〉  ∈  ∪  𝐴 ) )  | 
						
						
							| 5 | 
							
								
							 | 
							bnj1379.6 | 
							⊢ ( 𝜃  ↔  ( 𝜒  ∧  𝑓  ∈  𝐴  ∧  〈 𝑥 ,  𝑦 〉  ∈  𝑓 ) )  | 
						
						
							| 6 | 
							
								
							 | 
							bnj1379.7 | 
							⊢ ( 𝜏  ↔  ( 𝜃  ∧  𝑔  ∈  𝐴  ∧  〈 𝑥 ,  𝑧 〉  ∈  𝑔 ) )  | 
						
						
							| 7 | 
							
								1
							 | 
							bnj1095 | 
							⊢ ( 𝜑  →  ∀ 𝑓 𝜑 )  | 
						
						
							| 8 | 
							
								7
							 | 
							nf5i | 
							⊢ Ⅎ 𝑓 𝜑  | 
						
						
							| 9 | 
							
								
							 | 
							nfra1 | 
							⊢ Ⅎ 𝑓 ∀ 𝑓  ∈  𝐴 ∀ 𝑔  ∈  𝐴 ( 𝑓  ↾  𝐷 )  =  ( 𝑔  ↾  𝐷 )  | 
						
						
							| 10 | 
							
								8 9
							 | 
							nfan | 
							⊢ Ⅎ 𝑓 ( 𝜑  ∧  ∀ 𝑓  ∈  𝐴 ∀ 𝑔  ∈  𝐴 ( 𝑓  ↾  𝐷 )  =  ( 𝑔  ↾  𝐷 ) )  | 
						
						
							| 11 | 
							
								3 10
							 | 
							nfxfr | 
							⊢ Ⅎ 𝑓 𝜓  | 
						
						
							| 12 | 
							
								1
							 | 
							bnj946 | 
							⊢ ( 𝜑  ↔  ∀ 𝑓 ( 𝑓  ∈  𝐴  →  Fun  𝑓 ) )  | 
						
						
							| 13 | 
							
								12
							 | 
							biimpi | 
							⊢ ( 𝜑  →  ∀ 𝑓 ( 𝑓  ∈  𝐴  →  Fun  𝑓 ) )  | 
						
						
							| 14 | 
							
								13
							 | 
							19.21bi | 
							⊢ ( 𝜑  →  ( 𝑓  ∈  𝐴  →  Fun  𝑓 ) )  | 
						
						
							| 15 | 
							
								3 14
							 | 
							bnj832 | 
							⊢ ( 𝜓  →  ( 𝑓  ∈  𝐴  →  Fun  𝑓 ) )  | 
						
						
							| 16 | 
							
								
							 | 
							funrel | 
							⊢ ( Fun  𝑓  →  Rel  𝑓 )  | 
						
						
							| 17 | 
							
								15 16
							 | 
							syl6 | 
							⊢ ( 𝜓  →  ( 𝑓  ∈  𝐴  →  Rel  𝑓 ) )  | 
						
						
							| 18 | 
							
								11 17
							 | 
							ralrimi | 
							⊢ ( 𝜓  →  ∀ 𝑓  ∈  𝐴 Rel  𝑓 )  | 
						
						
							| 19 | 
							
								
							 | 
							reluni | 
							⊢ ( Rel  ∪  𝐴  ↔  ∀ 𝑓  ∈  𝐴 Rel  𝑓 )  | 
						
						
							| 20 | 
							
								18 19
							 | 
							sylibr | 
							⊢ ( 𝜓  →  Rel  ∪  𝐴 )  | 
						
						
							| 21 | 
							
								
							 | 
							eluni2 | 
							⊢ ( 〈 𝑥 ,  𝑦 〉  ∈  ∪  𝐴  ↔  ∃ 𝑓  ∈  𝐴 〈 𝑥 ,  𝑦 〉  ∈  𝑓 )  | 
						
						
							| 22 | 
							
								21
							 | 
							biimpi | 
							⊢ ( 〈 𝑥 ,  𝑦 〉  ∈  ∪  𝐴  →  ∃ 𝑓  ∈  𝐴 〈 𝑥 ,  𝑦 〉  ∈  𝑓 )  | 
						
						
							| 23 | 
							
								22
							 | 
							bnj1196 | 
							⊢ ( 〈 𝑥 ,  𝑦 〉  ∈  ∪  𝐴  →  ∃ 𝑓 ( 𝑓  ∈  𝐴  ∧  〈 𝑥 ,  𝑦 〉  ∈  𝑓 ) )  | 
						
						
							| 24 | 
							
								4 23
							 | 
							bnj836 | 
							⊢ ( 𝜒  →  ∃ 𝑓 ( 𝑓  ∈  𝐴  ∧  〈 𝑥 ,  𝑦 〉  ∈  𝑓 ) )  | 
						
						
							| 25 | 
							
								
							 | 
							nfv | 
							⊢ Ⅎ 𝑓 〈 𝑥 ,  𝑦 〉  ∈  ∪  𝐴  | 
						
						
							| 26 | 
							
								
							 | 
							nfv | 
							⊢ Ⅎ 𝑓 〈 𝑥 ,  𝑧 〉  ∈  ∪  𝐴  | 
						
						
							| 27 | 
							
								11 25 26
							 | 
							nf3an | 
							⊢ Ⅎ 𝑓 ( 𝜓  ∧  〈 𝑥 ,  𝑦 〉  ∈  ∪  𝐴  ∧  〈 𝑥 ,  𝑧 〉  ∈  ∪  𝐴 )  | 
						
						
							| 28 | 
							
								4 27
							 | 
							nfxfr | 
							⊢ Ⅎ 𝑓 𝜒  | 
						
						
							| 29 | 
							
								28
							 | 
							nf5ri | 
							⊢ ( 𝜒  →  ∀ 𝑓 𝜒 )  | 
						
						
							| 30 | 
							
								24 5 29
							 | 
							bnj1345 | 
							⊢ ( 𝜒  →  ∃ 𝑓 𝜃 )  | 
						
						
							| 31 | 
							
								4
							 | 
							simp3bi | 
							⊢ ( 𝜒  →  〈 𝑥 ,  𝑧 〉  ∈  ∪  𝐴 )  | 
						
						
							| 32 | 
							
								5 31
							 | 
							bnj835 | 
							⊢ ( 𝜃  →  〈 𝑥 ,  𝑧 〉  ∈  ∪  𝐴 )  | 
						
						
							| 33 | 
							
								
							 | 
							eluni2 | 
							⊢ ( 〈 𝑥 ,  𝑧 〉  ∈  ∪  𝐴  ↔  ∃ 𝑔  ∈  𝐴 〈 𝑥 ,  𝑧 〉  ∈  𝑔 )  | 
						
						
							| 34 | 
							
								33
							 | 
							biimpi | 
							⊢ ( 〈 𝑥 ,  𝑧 〉  ∈  ∪  𝐴  →  ∃ 𝑔  ∈  𝐴 〈 𝑥 ,  𝑧 〉  ∈  𝑔 )  | 
						
						
							| 35 | 
							
								34
							 | 
							bnj1196 | 
							⊢ ( 〈 𝑥 ,  𝑧 〉  ∈  ∪  𝐴  →  ∃ 𝑔 ( 𝑔  ∈  𝐴  ∧  〈 𝑥 ,  𝑧 〉  ∈  𝑔 ) )  | 
						
						
							| 36 | 
							
								32 35
							 | 
							syl | 
							⊢ ( 𝜃  →  ∃ 𝑔 ( 𝑔  ∈  𝐴  ∧  〈 𝑥 ,  𝑧 〉  ∈  𝑔 ) )  | 
						
						
							| 37 | 
							
								
							 | 
							nfv | 
							⊢ Ⅎ 𝑔 𝜑  | 
						
						
							| 38 | 
							
								
							 | 
							nfra2w | 
							⊢ Ⅎ 𝑔 ∀ 𝑓  ∈  𝐴 ∀ 𝑔  ∈  𝐴 ( 𝑓  ↾  𝐷 )  =  ( 𝑔  ↾  𝐷 )  | 
						
						
							| 39 | 
							
								37 38
							 | 
							nfan | 
							⊢ Ⅎ 𝑔 ( 𝜑  ∧  ∀ 𝑓  ∈  𝐴 ∀ 𝑔  ∈  𝐴 ( 𝑓  ↾  𝐷 )  =  ( 𝑔  ↾  𝐷 ) )  | 
						
						
							| 40 | 
							
								3 39
							 | 
							nfxfr | 
							⊢ Ⅎ 𝑔 𝜓  | 
						
						
							| 41 | 
							
								
							 | 
							nfv | 
							⊢ Ⅎ 𝑔 〈 𝑥 ,  𝑦 〉  ∈  ∪  𝐴  | 
						
						
							| 42 | 
							
								
							 | 
							nfv | 
							⊢ Ⅎ 𝑔 〈 𝑥 ,  𝑧 〉  ∈  ∪  𝐴  | 
						
						
							| 43 | 
							
								40 41 42
							 | 
							nf3an | 
							⊢ Ⅎ 𝑔 ( 𝜓  ∧  〈 𝑥 ,  𝑦 〉  ∈  ∪  𝐴  ∧  〈 𝑥 ,  𝑧 〉  ∈  ∪  𝐴 )  | 
						
						
							| 44 | 
							
								4 43
							 | 
							nfxfr | 
							⊢ Ⅎ 𝑔 𝜒  | 
						
						
							| 45 | 
							
								
							 | 
							nfv | 
							⊢ Ⅎ 𝑔 𝑓  ∈  𝐴  | 
						
						
							| 46 | 
							
								
							 | 
							nfv | 
							⊢ Ⅎ 𝑔 〈 𝑥 ,  𝑦 〉  ∈  𝑓  | 
						
						
							| 47 | 
							
								44 45 46
							 | 
							nf3an | 
							⊢ Ⅎ 𝑔 ( 𝜒  ∧  𝑓  ∈  𝐴  ∧  〈 𝑥 ,  𝑦 〉  ∈  𝑓 )  | 
						
						
							| 48 | 
							
								5 47
							 | 
							nfxfr | 
							⊢ Ⅎ 𝑔 𝜃  | 
						
						
							| 49 | 
							
								48
							 | 
							nf5ri | 
							⊢ ( 𝜃  →  ∀ 𝑔 𝜃 )  | 
						
						
							| 50 | 
							
								36 6 49
							 | 
							bnj1345 | 
							⊢ ( 𝜃  →  ∃ 𝑔 𝜏 )  | 
						
						
							| 51 | 
							
								3
							 | 
							simprbi | 
							⊢ ( 𝜓  →  ∀ 𝑓  ∈  𝐴 ∀ 𝑔  ∈  𝐴 ( 𝑓  ↾  𝐷 )  =  ( 𝑔  ↾  𝐷 ) )  | 
						
						
							| 52 | 
							
								4 51
							 | 
							bnj835 | 
							⊢ ( 𝜒  →  ∀ 𝑓  ∈  𝐴 ∀ 𝑔  ∈  𝐴 ( 𝑓  ↾  𝐷 )  =  ( 𝑔  ↾  𝐷 ) )  | 
						
						
							| 53 | 
							
								5 52
							 | 
							bnj835 | 
							⊢ ( 𝜃  →  ∀ 𝑓  ∈  𝐴 ∀ 𝑔  ∈  𝐴 ( 𝑓  ↾  𝐷 )  =  ( 𝑔  ↾  𝐷 ) )  | 
						
						
							| 54 | 
							
								6 53
							 | 
							bnj835 | 
							⊢ ( 𝜏  →  ∀ 𝑓  ∈  𝐴 ∀ 𝑔  ∈  𝐴 ( 𝑓  ↾  𝐷 )  =  ( 𝑔  ↾  𝐷 ) )  | 
						
						
							| 55 | 
							
								5 6
							 | 
							bnj1219 | 
							⊢ ( 𝜏  →  𝑓  ∈  𝐴 )  | 
						
						
							| 56 | 
							
								54 55
							 | 
							bnj1294 | 
							⊢ ( 𝜏  →  ∀ 𝑔  ∈  𝐴 ( 𝑓  ↾  𝐷 )  =  ( 𝑔  ↾  𝐷 ) )  | 
						
						
							| 57 | 
							
								6
							 | 
							simp2bi | 
							⊢ ( 𝜏  →  𝑔  ∈  𝐴 )  | 
						
						
							| 58 | 
							
								56 57
							 | 
							bnj1294 | 
							⊢ ( 𝜏  →  ( 𝑓  ↾  𝐷 )  =  ( 𝑔  ↾  𝐷 ) )  | 
						
						
							| 59 | 
							
								58
							 | 
							fveq1d | 
							⊢ ( 𝜏  →  ( ( 𝑓  ↾  𝐷 ) ‘ 𝑥 )  =  ( ( 𝑔  ↾  𝐷 ) ‘ 𝑥 ) )  | 
						
						
							| 60 | 
							
								5
							 | 
							simp3bi | 
							⊢ ( 𝜃  →  〈 𝑥 ,  𝑦 〉  ∈  𝑓 )  | 
						
						
							| 61 | 
							
								6 60
							 | 
							bnj835 | 
							⊢ ( 𝜏  →  〈 𝑥 ,  𝑦 〉  ∈  𝑓 )  | 
						
						
							| 62 | 
							
								
							 | 
							vex | 
							⊢ 𝑥  ∈  V  | 
						
						
							| 63 | 
							
								
							 | 
							vex | 
							⊢ 𝑦  ∈  V  | 
						
						
							| 64 | 
							
								62 63
							 | 
							opeldm | 
							⊢ ( 〈 𝑥 ,  𝑦 〉  ∈  𝑓  →  𝑥  ∈  dom  𝑓 )  | 
						
						
							| 65 | 
							
								61 64
							 | 
							syl | 
							⊢ ( 𝜏  →  𝑥  ∈  dom  𝑓 )  | 
						
						
							| 66 | 
							
								
							 | 
							vex | 
							⊢ 𝑧  ∈  V  | 
						
						
							| 67 | 
							
								62 66
							 | 
							opeldm | 
							⊢ ( 〈 𝑥 ,  𝑧 〉  ∈  𝑔  →  𝑥  ∈  dom  𝑔 )  | 
						
						
							| 68 | 
							
								6 67
							 | 
							bnj837 | 
							⊢ ( 𝜏  →  𝑥  ∈  dom  𝑔 )  | 
						
						
							| 69 | 
							
								65 68
							 | 
							elind | 
							⊢ ( 𝜏  →  𝑥  ∈  ( dom  𝑓  ∩  dom  𝑔 ) )  | 
						
						
							| 70 | 
							
								69 2
							 | 
							eleqtrrdi | 
							⊢ ( 𝜏  →  𝑥  ∈  𝐷 )  | 
						
						
							| 71 | 
							
								70
							 | 
							fvresd | 
							⊢ ( 𝜏  →  ( ( 𝑓  ↾  𝐷 ) ‘ 𝑥 )  =  ( 𝑓 ‘ 𝑥 ) )  | 
						
						
							| 72 | 
							
								70
							 | 
							fvresd | 
							⊢ ( 𝜏  →  ( ( 𝑔  ↾  𝐷 ) ‘ 𝑥 )  =  ( 𝑔 ‘ 𝑥 ) )  | 
						
						
							| 73 | 
							
								59 71 72
							 | 
							3eqtr3d | 
							⊢ ( 𝜏  →  ( 𝑓 ‘ 𝑥 )  =  ( 𝑔 ‘ 𝑥 ) )  | 
						
						
							| 74 | 
							
								1
							 | 
							biimpi | 
							⊢ ( 𝜑  →  ∀ 𝑓  ∈  𝐴 Fun  𝑓 )  | 
						
						
							| 75 | 
							
								3 74
							 | 
							bnj832 | 
							⊢ ( 𝜓  →  ∀ 𝑓  ∈  𝐴 Fun  𝑓 )  | 
						
						
							| 76 | 
							
								4 75
							 | 
							bnj835 | 
							⊢ ( 𝜒  →  ∀ 𝑓  ∈  𝐴 Fun  𝑓 )  | 
						
						
							| 77 | 
							
								5 76
							 | 
							bnj835 | 
							⊢ ( 𝜃  →  ∀ 𝑓  ∈  𝐴 Fun  𝑓 )  | 
						
						
							| 78 | 
							
								6 77
							 | 
							bnj835 | 
							⊢ ( 𝜏  →  ∀ 𝑓  ∈  𝐴 Fun  𝑓 )  | 
						
						
							| 79 | 
							
								78 55
							 | 
							bnj1294 | 
							⊢ ( 𝜏  →  Fun  𝑓 )  | 
						
						
							| 80 | 
							
								
							 | 
							funopfv | 
							⊢ ( Fun  𝑓  →  ( 〈 𝑥 ,  𝑦 〉  ∈  𝑓  →  ( 𝑓 ‘ 𝑥 )  =  𝑦 ) )  | 
						
						
							| 81 | 
							
								79 61 80
							 | 
							sylc | 
							⊢ ( 𝜏  →  ( 𝑓 ‘ 𝑥 )  =  𝑦 )  | 
						
						
							| 82 | 
							
								
							 | 
							funeq | 
							⊢ ( 𝑓  =  𝑔  →  ( Fun  𝑓  ↔  Fun  𝑔 ) )  | 
						
						
							| 83 | 
							
								82 78 57
							 | 
							rspcdva | 
							⊢ ( 𝜏  →  Fun  𝑔 )  | 
						
						
							| 84 | 
							
								6
							 | 
							simp3bi | 
							⊢ ( 𝜏  →  〈 𝑥 ,  𝑧 〉  ∈  𝑔 )  | 
						
						
							| 85 | 
							
								
							 | 
							funopfv | 
							⊢ ( Fun  𝑔  →  ( 〈 𝑥 ,  𝑧 〉  ∈  𝑔  →  ( 𝑔 ‘ 𝑥 )  =  𝑧 ) )  | 
						
						
							| 86 | 
							
								83 84 85
							 | 
							sylc | 
							⊢ ( 𝜏  →  ( 𝑔 ‘ 𝑥 )  =  𝑧 )  | 
						
						
							| 87 | 
							
								73 81 86
							 | 
							3eqtr3d | 
							⊢ ( 𝜏  →  𝑦  =  𝑧 )  | 
						
						
							| 88 | 
							
								50 87
							 | 
							bnj593 | 
							⊢ ( 𝜃  →  ∃ 𝑔 𝑦  =  𝑧 )  | 
						
						
							| 89 | 
							
								88
							 | 
							bnj937 | 
							⊢ ( 𝜃  →  𝑦  =  𝑧 )  | 
						
						
							| 90 | 
							
								30 89
							 | 
							bnj593 | 
							⊢ ( 𝜒  →  ∃ 𝑓 𝑦  =  𝑧 )  | 
						
						
							| 91 | 
							
								90
							 | 
							bnj937 | 
							⊢ ( 𝜒  →  𝑦  =  𝑧 )  | 
						
						
							| 92 | 
							
								4 91
							 | 
							sylbir | 
							⊢ ( ( 𝜓  ∧  〈 𝑥 ,  𝑦 〉  ∈  ∪  𝐴  ∧  〈 𝑥 ,  𝑧 〉  ∈  ∪  𝐴 )  →  𝑦  =  𝑧 )  | 
						
						
							| 93 | 
							
								92
							 | 
							3expib | 
							⊢ ( 𝜓  →  ( ( 〈 𝑥 ,  𝑦 〉  ∈  ∪  𝐴  ∧  〈 𝑥 ,  𝑧 〉  ∈  ∪  𝐴 )  →  𝑦  =  𝑧 ) )  | 
						
						
							| 94 | 
							
								93
							 | 
							alrimivv | 
							⊢ ( 𝜓  →  ∀ 𝑦 ∀ 𝑧 ( ( 〈 𝑥 ,  𝑦 〉  ∈  ∪  𝐴  ∧  〈 𝑥 ,  𝑧 〉  ∈  ∪  𝐴 )  →  𝑦  =  𝑧 ) )  | 
						
						
							| 95 | 
							
								94
							 | 
							alrimiv | 
							⊢ ( 𝜓  →  ∀ 𝑥 ∀ 𝑦 ∀ 𝑧 ( ( 〈 𝑥 ,  𝑦 〉  ∈  ∪  𝐴  ∧  〈 𝑥 ,  𝑧 〉  ∈  ∪  𝐴 )  →  𝑦  =  𝑧 ) )  | 
						
						
							| 96 | 
							
								
							 | 
							dffun4 | 
							⊢ ( Fun  ∪  𝐴  ↔  ( Rel  ∪  𝐴  ∧  ∀ 𝑥 ∀ 𝑦 ∀ 𝑧 ( ( 〈 𝑥 ,  𝑦 〉  ∈  ∪  𝐴  ∧  〈 𝑥 ,  𝑧 〉  ∈  ∪  𝐴 )  →  𝑦  =  𝑧 ) ) )  | 
						
						
							| 97 | 
							
								20 95 96
							 | 
							sylanbrc | 
							⊢ ( 𝜓  →  Fun  ∪  𝐴 )  |