Metamath Proof Explorer


Theorem bnj1383

Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (New usage is discouraged.)

Ref Expression
Hypotheses bnj1383.1 ( 𝜑 ↔ ∀ 𝑓𝐴 Fun 𝑓 )
bnj1383.2 𝐷 = ( dom 𝑓 ∩ dom 𝑔 )
bnj1383.3 ( 𝜓 ↔ ( 𝜑 ∧ ∀ 𝑓𝐴𝑔𝐴 ( 𝑓𝐷 ) = ( 𝑔𝐷 ) ) )
Assertion bnj1383 ( 𝜓 → Fun 𝐴 )

Proof

Step Hyp Ref Expression
1 bnj1383.1 ( 𝜑 ↔ ∀ 𝑓𝐴 Fun 𝑓 )
2 bnj1383.2 𝐷 = ( dom 𝑓 ∩ dom 𝑔 )
3 bnj1383.3 ( 𝜓 ↔ ( 𝜑 ∧ ∀ 𝑓𝐴𝑔𝐴 ( 𝑓𝐷 ) = ( 𝑔𝐷 ) ) )
4 biid ( ( 𝜓 ∧ ⟨ 𝑥 , 𝑦 ⟩ ∈ 𝐴 ∧ ⟨ 𝑥 , 𝑧 ⟩ ∈ 𝐴 ) ↔ ( 𝜓 ∧ ⟨ 𝑥 , 𝑦 ⟩ ∈ 𝐴 ∧ ⟨ 𝑥 , 𝑧 ⟩ ∈ 𝐴 ) )
5 biid ( ( ( 𝜓 ∧ ⟨ 𝑥 , 𝑦 ⟩ ∈ 𝐴 ∧ ⟨ 𝑥 , 𝑧 ⟩ ∈ 𝐴 ) ∧ 𝑓𝐴 ∧ ⟨ 𝑥 , 𝑦 ⟩ ∈ 𝑓 ) ↔ ( ( 𝜓 ∧ ⟨ 𝑥 , 𝑦 ⟩ ∈ 𝐴 ∧ ⟨ 𝑥 , 𝑧 ⟩ ∈ 𝐴 ) ∧ 𝑓𝐴 ∧ ⟨ 𝑥 , 𝑦 ⟩ ∈ 𝑓 ) )
6 biid ( ( ( ( 𝜓 ∧ ⟨ 𝑥 , 𝑦 ⟩ ∈ 𝐴 ∧ ⟨ 𝑥 , 𝑧 ⟩ ∈ 𝐴 ) ∧ 𝑓𝐴 ∧ ⟨ 𝑥 , 𝑦 ⟩ ∈ 𝑓 ) ∧ 𝑔𝐴 ∧ ⟨ 𝑥 , 𝑧 ⟩ ∈ 𝑔 ) ↔ ( ( ( 𝜓 ∧ ⟨ 𝑥 , 𝑦 ⟩ ∈ 𝐴 ∧ ⟨ 𝑥 , 𝑧 ⟩ ∈ 𝐴 ) ∧ 𝑓𝐴 ∧ ⟨ 𝑥 , 𝑦 ⟩ ∈ 𝑓 ) ∧ 𝑔𝐴 ∧ ⟨ 𝑥 , 𝑧 ⟩ ∈ 𝑔 ) )
7 1 2 3 4 5 6 bnj1379 ( 𝜓 → Fun 𝐴 )