Step |
Hyp |
Ref |
Expression |
1 |
|
bnj1384.1 |
⊢ 𝐵 = { 𝑑 ∣ ( 𝑑 ⊆ 𝐴 ∧ ∀ 𝑥 ∈ 𝑑 pred ( 𝑥 , 𝐴 , 𝑅 ) ⊆ 𝑑 ) } |
2 |
|
bnj1384.2 |
⊢ 𝑌 = 〈 𝑥 , ( 𝑓 ↾ pred ( 𝑥 , 𝐴 , 𝑅 ) ) 〉 |
3 |
|
bnj1384.3 |
⊢ 𝐶 = { 𝑓 ∣ ∃ 𝑑 ∈ 𝐵 ( 𝑓 Fn 𝑑 ∧ ∀ 𝑥 ∈ 𝑑 ( 𝑓 ‘ 𝑥 ) = ( 𝐺 ‘ 𝑌 ) ) } |
4 |
|
bnj1384.4 |
⊢ ( 𝜏 ↔ ( 𝑓 ∈ 𝐶 ∧ dom 𝑓 = ( { 𝑥 } ∪ trCl ( 𝑥 , 𝐴 , 𝑅 ) ) ) ) |
5 |
|
bnj1384.5 |
⊢ 𝐷 = { 𝑥 ∈ 𝐴 ∣ ¬ ∃ 𝑓 𝜏 } |
6 |
|
bnj1384.6 |
⊢ ( 𝜓 ↔ ( 𝑅 FrSe 𝐴 ∧ 𝐷 ≠ ∅ ) ) |
7 |
|
bnj1384.7 |
⊢ ( 𝜒 ↔ ( 𝜓 ∧ 𝑥 ∈ 𝐷 ∧ ∀ 𝑦 ∈ 𝐷 ¬ 𝑦 𝑅 𝑥 ) ) |
8 |
|
bnj1384.8 |
⊢ ( 𝜏′ ↔ [ 𝑦 / 𝑥 ] 𝜏 ) |
9 |
|
bnj1384.9 |
⊢ 𝐻 = { 𝑓 ∣ ∃ 𝑦 ∈ pred ( 𝑥 , 𝐴 , 𝑅 ) 𝜏′ } |
10 |
|
bnj1384.10 |
⊢ 𝑃 = ∪ 𝐻 |
11 |
1 2 3 4 8
|
bnj1373 |
⊢ ( 𝜏′ ↔ ( 𝑓 ∈ 𝐶 ∧ dom 𝑓 = ( { 𝑦 } ∪ trCl ( 𝑦 , 𝐴 , 𝑅 ) ) ) ) |
12 |
1 2 3 4 5 6 7 8 9 10 11
|
bnj1371 |
⊢ ( 𝑓 ∈ 𝐻 → Fun 𝑓 ) |
13 |
12
|
rgen |
⊢ ∀ 𝑓 ∈ 𝐻 Fun 𝑓 |
14 |
|
id |
⊢ ( 𝑅 FrSe 𝐴 → 𝑅 FrSe 𝐴 ) |
15 |
1 2 3 4 5 6 7 8 9
|
bnj1374 |
⊢ ( 𝑓 ∈ 𝐻 → 𝑓 ∈ 𝐶 ) |
16 |
|
nfab1 |
⊢ Ⅎ 𝑓 { 𝑓 ∣ ∃ 𝑦 ∈ pred ( 𝑥 , 𝐴 , 𝑅 ) 𝜏′ } |
17 |
9 16
|
nfcxfr |
⊢ Ⅎ 𝑓 𝐻 |
18 |
17
|
nfcri |
⊢ Ⅎ 𝑓 𝑔 ∈ 𝐻 |
19 |
|
nfab1 |
⊢ Ⅎ 𝑓 { 𝑓 ∣ ∃ 𝑑 ∈ 𝐵 ( 𝑓 Fn 𝑑 ∧ ∀ 𝑥 ∈ 𝑑 ( 𝑓 ‘ 𝑥 ) = ( 𝐺 ‘ 𝑌 ) ) } |
20 |
3 19
|
nfcxfr |
⊢ Ⅎ 𝑓 𝐶 |
21 |
20
|
nfcri |
⊢ Ⅎ 𝑓 𝑔 ∈ 𝐶 |
22 |
18 21
|
nfim |
⊢ Ⅎ 𝑓 ( 𝑔 ∈ 𝐻 → 𝑔 ∈ 𝐶 ) |
23 |
|
eleq1w |
⊢ ( 𝑓 = 𝑔 → ( 𝑓 ∈ 𝐻 ↔ 𝑔 ∈ 𝐻 ) ) |
24 |
|
eleq1w |
⊢ ( 𝑓 = 𝑔 → ( 𝑓 ∈ 𝐶 ↔ 𝑔 ∈ 𝐶 ) ) |
25 |
23 24
|
imbi12d |
⊢ ( 𝑓 = 𝑔 → ( ( 𝑓 ∈ 𝐻 → 𝑓 ∈ 𝐶 ) ↔ ( 𝑔 ∈ 𝐻 → 𝑔 ∈ 𝐶 ) ) ) |
26 |
22 25 15
|
chvarfv |
⊢ ( 𝑔 ∈ 𝐻 → 𝑔 ∈ 𝐶 ) |
27 |
|
eqid |
⊢ ( dom 𝑓 ∩ dom 𝑔 ) = ( dom 𝑓 ∩ dom 𝑔 ) |
28 |
1 2 3 27
|
bnj1326 |
⊢ ( ( 𝑅 FrSe 𝐴 ∧ 𝑓 ∈ 𝐶 ∧ 𝑔 ∈ 𝐶 ) → ( 𝑓 ↾ ( dom 𝑓 ∩ dom 𝑔 ) ) = ( 𝑔 ↾ ( dom 𝑓 ∩ dom 𝑔 ) ) ) |
29 |
14 15 26 28
|
syl3an |
⊢ ( ( 𝑅 FrSe 𝐴 ∧ 𝑓 ∈ 𝐻 ∧ 𝑔 ∈ 𝐻 ) → ( 𝑓 ↾ ( dom 𝑓 ∩ dom 𝑔 ) ) = ( 𝑔 ↾ ( dom 𝑓 ∩ dom 𝑔 ) ) ) |
30 |
29
|
3expib |
⊢ ( 𝑅 FrSe 𝐴 → ( ( 𝑓 ∈ 𝐻 ∧ 𝑔 ∈ 𝐻 ) → ( 𝑓 ↾ ( dom 𝑓 ∩ dom 𝑔 ) ) = ( 𝑔 ↾ ( dom 𝑓 ∩ dom 𝑔 ) ) ) ) |
31 |
30
|
ralrimivv |
⊢ ( 𝑅 FrSe 𝐴 → ∀ 𝑓 ∈ 𝐻 ∀ 𝑔 ∈ 𝐻 ( 𝑓 ↾ ( dom 𝑓 ∩ dom 𝑔 ) ) = ( 𝑔 ↾ ( dom 𝑓 ∩ dom 𝑔 ) ) ) |
32 |
|
biid |
⊢ ( ∀ 𝑓 ∈ 𝐻 Fun 𝑓 ↔ ∀ 𝑓 ∈ 𝐻 Fun 𝑓 ) |
33 |
|
biid |
⊢ ( ( ∀ 𝑓 ∈ 𝐻 Fun 𝑓 ∧ ∀ 𝑓 ∈ 𝐻 ∀ 𝑔 ∈ 𝐻 ( 𝑓 ↾ ( dom 𝑓 ∩ dom 𝑔 ) ) = ( 𝑔 ↾ ( dom 𝑓 ∩ dom 𝑔 ) ) ) ↔ ( ∀ 𝑓 ∈ 𝐻 Fun 𝑓 ∧ ∀ 𝑓 ∈ 𝐻 ∀ 𝑔 ∈ 𝐻 ( 𝑓 ↾ ( dom 𝑓 ∩ dom 𝑔 ) ) = ( 𝑔 ↾ ( dom 𝑓 ∩ dom 𝑔 ) ) ) ) |
34 |
9
|
bnj1317 |
⊢ ( 𝑧 ∈ 𝐻 → ∀ 𝑓 𝑧 ∈ 𝐻 ) |
35 |
32 27 33 34
|
bnj1386 |
⊢ ( ( ∀ 𝑓 ∈ 𝐻 Fun 𝑓 ∧ ∀ 𝑓 ∈ 𝐻 ∀ 𝑔 ∈ 𝐻 ( 𝑓 ↾ ( dom 𝑓 ∩ dom 𝑔 ) ) = ( 𝑔 ↾ ( dom 𝑓 ∩ dom 𝑔 ) ) ) → Fun ∪ 𝐻 ) |
36 |
13 31 35
|
sylancr |
⊢ ( 𝑅 FrSe 𝐴 → Fun ∪ 𝐻 ) |
37 |
10
|
funeqi |
⊢ ( Fun 𝑃 ↔ Fun ∪ 𝐻 ) |
38 |
36 37
|
sylibr |
⊢ ( 𝑅 FrSe 𝐴 → Fun 𝑃 ) |