Metamath Proof Explorer


Theorem bnj1384

Description: Technical lemma for bnj60 . This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (New usage is discouraged.)

Ref Expression
Hypotheses bnj1384.1 𝐵 = { 𝑑 ∣ ( 𝑑𝐴 ∧ ∀ 𝑥𝑑 pred ( 𝑥 , 𝐴 , 𝑅 ) ⊆ 𝑑 ) }
bnj1384.2 𝑌 = ⟨ 𝑥 , ( 𝑓 ↾ pred ( 𝑥 , 𝐴 , 𝑅 ) ) ⟩
bnj1384.3 𝐶 = { 𝑓 ∣ ∃ 𝑑𝐵 ( 𝑓 Fn 𝑑 ∧ ∀ 𝑥𝑑 ( 𝑓𝑥 ) = ( 𝐺𝑌 ) ) }
bnj1384.4 ( 𝜏 ↔ ( 𝑓𝐶 ∧ dom 𝑓 = ( { 𝑥 } ∪ trCl ( 𝑥 , 𝐴 , 𝑅 ) ) ) )
bnj1384.5 𝐷 = { 𝑥𝐴 ∣ ¬ ∃ 𝑓 𝜏 }
bnj1384.6 ( 𝜓 ↔ ( 𝑅 FrSe 𝐴𝐷 ≠ ∅ ) )
bnj1384.7 ( 𝜒 ↔ ( 𝜓𝑥𝐷 ∧ ∀ 𝑦𝐷 ¬ 𝑦 𝑅 𝑥 ) )
bnj1384.8 ( 𝜏′[ 𝑦 / 𝑥 ] 𝜏 )
bnj1384.9 𝐻 = { 𝑓 ∣ ∃ 𝑦 ∈ pred ( 𝑥 , 𝐴 , 𝑅 ) 𝜏′ }
bnj1384.10 𝑃 = 𝐻
Assertion bnj1384 ( 𝑅 FrSe 𝐴 → Fun 𝑃 )

Proof

Step Hyp Ref Expression
1 bnj1384.1 𝐵 = { 𝑑 ∣ ( 𝑑𝐴 ∧ ∀ 𝑥𝑑 pred ( 𝑥 , 𝐴 , 𝑅 ) ⊆ 𝑑 ) }
2 bnj1384.2 𝑌 = ⟨ 𝑥 , ( 𝑓 ↾ pred ( 𝑥 , 𝐴 , 𝑅 ) ) ⟩
3 bnj1384.3 𝐶 = { 𝑓 ∣ ∃ 𝑑𝐵 ( 𝑓 Fn 𝑑 ∧ ∀ 𝑥𝑑 ( 𝑓𝑥 ) = ( 𝐺𝑌 ) ) }
4 bnj1384.4 ( 𝜏 ↔ ( 𝑓𝐶 ∧ dom 𝑓 = ( { 𝑥 } ∪ trCl ( 𝑥 , 𝐴 , 𝑅 ) ) ) )
5 bnj1384.5 𝐷 = { 𝑥𝐴 ∣ ¬ ∃ 𝑓 𝜏 }
6 bnj1384.6 ( 𝜓 ↔ ( 𝑅 FrSe 𝐴𝐷 ≠ ∅ ) )
7 bnj1384.7 ( 𝜒 ↔ ( 𝜓𝑥𝐷 ∧ ∀ 𝑦𝐷 ¬ 𝑦 𝑅 𝑥 ) )
8 bnj1384.8 ( 𝜏′[ 𝑦 / 𝑥 ] 𝜏 )
9 bnj1384.9 𝐻 = { 𝑓 ∣ ∃ 𝑦 ∈ pred ( 𝑥 , 𝐴 , 𝑅 ) 𝜏′ }
10 bnj1384.10 𝑃 = 𝐻
11 1 2 3 4 8 bnj1373 ( 𝜏′ ↔ ( 𝑓𝐶 ∧ dom 𝑓 = ( { 𝑦 } ∪ trCl ( 𝑦 , 𝐴 , 𝑅 ) ) ) )
12 1 2 3 4 5 6 7 8 9 10 11 bnj1371 ( 𝑓𝐻 → Fun 𝑓 )
13 12 rgen 𝑓𝐻 Fun 𝑓
14 id ( 𝑅 FrSe 𝐴𝑅 FrSe 𝐴 )
15 1 2 3 4 5 6 7 8 9 bnj1374 ( 𝑓𝐻𝑓𝐶 )
16 nfab1 𝑓 { 𝑓 ∣ ∃ 𝑦 ∈ pred ( 𝑥 , 𝐴 , 𝑅 ) 𝜏′ }
17 9 16 nfcxfr 𝑓 𝐻
18 17 nfcri 𝑓 𝑔𝐻
19 nfab1 𝑓 { 𝑓 ∣ ∃ 𝑑𝐵 ( 𝑓 Fn 𝑑 ∧ ∀ 𝑥𝑑 ( 𝑓𝑥 ) = ( 𝐺𝑌 ) ) }
20 3 19 nfcxfr 𝑓 𝐶
21 20 nfcri 𝑓 𝑔𝐶
22 18 21 nfim 𝑓 ( 𝑔𝐻𝑔𝐶 )
23 eleq1w ( 𝑓 = 𝑔 → ( 𝑓𝐻𝑔𝐻 ) )
24 eleq1w ( 𝑓 = 𝑔 → ( 𝑓𝐶𝑔𝐶 ) )
25 23 24 imbi12d ( 𝑓 = 𝑔 → ( ( 𝑓𝐻𝑓𝐶 ) ↔ ( 𝑔𝐻𝑔𝐶 ) ) )
26 22 25 15 chvarfv ( 𝑔𝐻𝑔𝐶 )
27 eqid ( dom 𝑓 ∩ dom 𝑔 ) = ( dom 𝑓 ∩ dom 𝑔 )
28 1 2 3 27 bnj1326 ( ( 𝑅 FrSe 𝐴𝑓𝐶𝑔𝐶 ) → ( 𝑓 ↾ ( dom 𝑓 ∩ dom 𝑔 ) ) = ( 𝑔 ↾ ( dom 𝑓 ∩ dom 𝑔 ) ) )
29 14 15 26 28 syl3an ( ( 𝑅 FrSe 𝐴𝑓𝐻𝑔𝐻 ) → ( 𝑓 ↾ ( dom 𝑓 ∩ dom 𝑔 ) ) = ( 𝑔 ↾ ( dom 𝑓 ∩ dom 𝑔 ) ) )
30 29 3expib ( 𝑅 FrSe 𝐴 → ( ( 𝑓𝐻𝑔𝐻 ) → ( 𝑓 ↾ ( dom 𝑓 ∩ dom 𝑔 ) ) = ( 𝑔 ↾ ( dom 𝑓 ∩ dom 𝑔 ) ) ) )
31 30 ralrimivv ( 𝑅 FrSe 𝐴 → ∀ 𝑓𝐻𝑔𝐻 ( 𝑓 ↾ ( dom 𝑓 ∩ dom 𝑔 ) ) = ( 𝑔 ↾ ( dom 𝑓 ∩ dom 𝑔 ) ) )
32 biid ( ∀ 𝑓𝐻 Fun 𝑓 ↔ ∀ 𝑓𝐻 Fun 𝑓 )
33 biid ( ( ∀ 𝑓𝐻 Fun 𝑓 ∧ ∀ 𝑓𝐻𝑔𝐻 ( 𝑓 ↾ ( dom 𝑓 ∩ dom 𝑔 ) ) = ( 𝑔 ↾ ( dom 𝑓 ∩ dom 𝑔 ) ) ) ↔ ( ∀ 𝑓𝐻 Fun 𝑓 ∧ ∀ 𝑓𝐻𝑔𝐻 ( 𝑓 ↾ ( dom 𝑓 ∩ dom 𝑔 ) ) = ( 𝑔 ↾ ( dom 𝑓 ∩ dom 𝑔 ) ) ) )
34 9 bnj1317 ( 𝑧𝐻 → ∀ 𝑓 𝑧𝐻 )
35 32 27 33 34 bnj1386 ( ( ∀ 𝑓𝐻 Fun 𝑓 ∧ ∀ 𝑓𝐻𝑔𝐻 ( 𝑓 ↾ ( dom 𝑓 ∩ dom 𝑔 ) ) = ( 𝑔 ↾ ( dom 𝑓 ∩ dom 𝑔 ) ) ) → Fun 𝐻 )
36 13 31 35 sylancr ( 𝑅 FrSe 𝐴 → Fun 𝐻 )
37 10 funeqi ( Fun 𝑃 ↔ Fun 𝐻 )
38 36 37 sylibr ( 𝑅 FrSe 𝐴 → Fun 𝑃 )