| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							bnj1385.1 | 
							⊢ ( 𝜑  ↔  ∀ 𝑓  ∈  𝐴 Fun  𝑓 )  | 
						
						
							| 2 | 
							
								
							 | 
							bnj1385.2 | 
							⊢ 𝐷  =  ( dom  𝑓  ∩  dom  𝑔 )  | 
						
						
							| 3 | 
							
								
							 | 
							bnj1385.3 | 
							⊢ ( 𝜓  ↔  ( 𝜑  ∧  ∀ 𝑓  ∈  𝐴 ∀ 𝑔  ∈  𝐴 ( 𝑓  ↾  𝐷 )  =  ( 𝑔  ↾  𝐷 ) ) )  | 
						
						
							| 4 | 
							
								
							 | 
							bnj1385.4 | 
							⊢ ( 𝑥  ∈  𝐴  →  ∀ 𝑓 𝑥  ∈  𝐴 )  | 
						
						
							| 5 | 
							
								
							 | 
							bnj1385.5 | 
							⊢ ( 𝜑′  ↔  ∀ ℎ  ∈  𝐴 Fun  ℎ )  | 
						
						
							| 6 | 
							
								
							 | 
							bnj1385.6 | 
							⊢ 𝐸  =  ( dom  ℎ  ∩  dom  𝑔 )  | 
						
						
							| 7 | 
							
								
							 | 
							bnj1385.7 | 
							⊢ ( 𝜓′  ↔  ( 𝜑′  ∧  ∀ ℎ  ∈  𝐴 ∀ 𝑔  ∈  𝐴 ( ℎ  ↾  𝐸 )  =  ( 𝑔  ↾  𝐸 ) ) )  | 
						
						
							| 8 | 
							
								
							 | 
							nfv | 
							⊢ Ⅎ ℎ ( 𝑓  ∈  𝐴  →  Fun  𝑓 )  | 
						
						
							| 9 | 
							
								4
							 | 
							nfcii | 
							⊢ Ⅎ 𝑓 𝐴  | 
						
						
							| 10 | 
							
								9
							 | 
							nfcri | 
							⊢ Ⅎ 𝑓 ℎ  ∈  𝐴  | 
						
						
							| 11 | 
							
								
							 | 
							nfv | 
							⊢ Ⅎ 𝑓 Fun  ℎ  | 
						
						
							| 12 | 
							
								10 11
							 | 
							nfim | 
							⊢ Ⅎ 𝑓 ( ℎ  ∈  𝐴  →  Fun  ℎ )  | 
						
						
							| 13 | 
							
								
							 | 
							eleq1w | 
							⊢ ( 𝑓  =  ℎ  →  ( 𝑓  ∈  𝐴  ↔  ℎ  ∈  𝐴 ) )  | 
						
						
							| 14 | 
							
								
							 | 
							funeq | 
							⊢ ( 𝑓  =  ℎ  →  ( Fun  𝑓  ↔  Fun  ℎ ) )  | 
						
						
							| 15 | 
							
								13 14
							 | 
							imbi12d | 
							⊢ ( 𝑓  =  ℎ  →  ( ( 𝑓  ∈  𝐴  →  Fun  𝑓 )  ↔  ( ℎ  ∈  𝐴  →  Fun  ℎ ) ) )  | 
						
						
							| 16 | 
							
								8 12 15
							 | 
							cbvalv1 | 
							⊢ ( ∀ 𝑓 ( 𝑓  ∈  𝐴  →  Fun  𝑓 )  ↔  ∀ ℎ ( ℎ  ∈  𝐴  →  Fun  ℎ ) )  | 
						
						
							| 17 | 
							
								
							 | 
							df-ral | 
							⊢ ( ∀ 𝑓  ∈  𝐴 Fun  𝑓  ↔  ∀ 𝑓 ( 𝑓  ∈  𝐴  →  Fun  𝑓 ) )  | 
						
						
							| 18 | 
							
								
							 | 
							df-ral | 
							⊢ ( ∀ ℎ  ∈  𝐴 Fun  ℎ  ↔  ∀ ℎ ( ℎ  ∈  𝐴  →  Fun  ℎ ) )  | 
						
						
							| 19 | 
							
								16 17 18
							 | 
							3bitr4i | 
							⊢ ( ∀ 𝑓  ∈  𝐴 Fun  𝑓  ↔  ∀ ℎ  ∈  𝐴 Fun  ℎ )  | 
						
						
							| 20 | 
							
								19 1 5
							 | 
							3bitr4i | 
							⊢ ( 𝜑  ↔  𝜑′ )  | 
						
						
							| 21 | 
							
								
							 | 
							nfv | 
							⊢ Ⅎ ℎ ( 𝑓  ∈  𝐴  →  ∀ 𝑔  ∈  𝐴 ( 𝑓  ↾  𝐷 )  =  ( 𝑔  ↾  𝐷 ) )  | 
						
						
							| 22 | 
							
								
							 | 
							nfv | 
							⊢ Ⅎ 𝑓 ( ℎ  ↾  𝐸 )  =  ( 𝑔  ↾  𝐸 )  | 
						
						
							| 23 | 
							
								9 22
							 | 
							nfralw | 
							⊢ Ⅎ 𝑓 ∀ 𝑔  ∈  𝐴 ( ℎ  ↾  𝐸 )  =  ( 𝑔  ↾  𝐸 )  | 
						
						
							| 24 | 
							
								10 23
							 | 
							nfim | 
							⊢ Ⅎ 𝑓 ( ℎ  ∈  𝐴  →  ∀ 𝑔  ∈  𝐴 ( ℎ  ↾  𝐸 )  =  ( 𝑔  ↾  𝐸 ) )  | 
						
						
							| 25 | 
							
								
							 | 
							dmeq | 
							⊢ ( 𝑓  =  ℎ  →  dom  𝑓  =  dom  ℎ )  | 
						
						
							| 26 | 
							
								25
							 | 
							ineq1d | 
							⊢ ( 𝑓  =  ℎ  →  ( dom  𝑓  ∩  dom  𝑔 )  =  ( dom  ℎ  ∩  dom  𝑔 ) )  | 
						
						
							| 27 | 
							
								26 2 6
							 | 
							3eqtr4g | 
							⊢ ( 𝑓  =  ℎ  →  𝐷  =  𝐸 )  | 
						
						
							| 28 | 
							
								27
							 | 
							reseq2d | 
							⊢ ( 𝑓  =  ℎ  →  ( 𝑓  ↾  𝐷 )  =  ( 𝑓  ↾  𝐸 ) )  | 
						
						
							| 29 | 
							
								
							 | 
							reseq1 | 
							⊢ ( 𝑓  =  ℎ  →  ( 𝑓  ↾  𝐸 )  =  ( ℎ  ↾  𝐸 ) )  | 
						
						
							| 30 | 
							
								28 29
							 | 
							eqtrd | 
							⊢ ( 𝑓  =  ℎ  →  ( 𝑓  ↾  𝐷 )  =  ( ℎ  ↾  𝐸 ) )  | 
						
						
							| 31 | 
							
								27
							 | 
							reseq2d | 
							⊢ ( 𝑓  =  ℎ  →  ( 𝑔  ↾  𝐷 )  =  ( 𝑔  ↾  𝐸 ) )  | 
						
						
							| 32 | 
							
								30 31
							 | 
							eqeq12d | 
							⊢ ( 𝑓  =  ℎ  →  ( ( 𝑓  ↾  𝐷 )  =  ( 𝑔  ↾  𝐷 )  ↔  ( ℎ  ↾  𝐸 )  =  ( 𝑔  ↾  𝐸 ) ) )  | 
						
						
							| 33 | 
							
								32
							 | 
							ralbidv | 
							⊢ ( 𝑓  =  ℎ  →  ( ∀ 𝑔  ∈  𝐴 ( 𝑓  ↾  𝐷 )  =  ( 𝑔  ↾  𝐷 )  ↔  ∀ 𝑔  ∈  𝐴 ( ℎ  ↾  𝐸 )  =  ( 𝑔  ↾  𝐸 ) ) )  | 
						
						
							| 34 | 
							
								13 33
							 | 
							imbi12d | 
							⊢ ( 𝑓  =  ℎ  →  ( ( 𝑓  ∈  𝐴  →  ∀ 𝑔  ∈  𝐴 ( 𝑓  ↾  𝐷 )  =  ( 𝑔  ↾  𝐷 ) )  ↔  ( ℎ  ∈  𝐴  →  ∀ 𝑔  ∈  𝐴 ( ℎ  ↾  𝐸 )  =  ( 𝑔  ↾  𝐸 ) ) ) )  | 
						
						
							| 35 | 
							
								21 24 34
							 | 
							cbvalv1 | 
							⊢ ( ∀ 𝑓 ( 𝑓  ∈  𝐴  →  ∀ 𝑔  ∈  𝐴 ( 𝑓  ↾  𝐷 )  =  ( 𝑔  ↾  𝐷 ) )  ↔  ∀ ℎ ( ℎ  ∈  𝐴  →  ∀ 𝑔  ∈  𝐴 ( ℎ  ↾  𝐸 )  =  ( 𝑔  ↾  𝐸 ) ) )  | 
						
						
							| 36 | 
							
								
							 | 
							df-ral | 
							⊢ ( ∀ 𝑓  ∈  𝐴 ∀ 𝑔  ∈  𝐴 ( 𝑓  ↾  𝐷 )  =  ( 𝑔  ↾  𝐷 )  ↔  ∀ 𝑓 ( 𝑓  ∈  𝐴  →  ∀ 𝑔  ∈  𝐴 ( 𝑓  ↾  𝐷 )  =  ( 𝑔  ↾  𝐷 ) ) )  | 
						
						
							| 37 | 
							
								
							 | 
							df-ral | 
							⊢ ( ∀ ℎ  ∈  𝐴 ∀ 𝑔  ∈  𝐴 ( ℎ  ↾  𝐸 )  =  ( 𝑔  ↾  𝐸 )  ↔  ∀ ℎ ( ℎ  ∈  𝐴  →  ∀ 𝑔  ∈  𝐴 ( ℎ  ↾  𝐸 )  =  ( 𝑔  ↾  𝐸 ) ) )  | 
						
						
							| 38 | 
							
								35 36 37
							 | 
							3bitr4i | 
							⊢ ( ∀ 𝑓  ∈  𝐴 ∀ 𝑔  ∈  𝐴 ( 𝑓  ↾  𝐷 )  =  ( 𝑔  ↾  𝐷 )  ↔  ∀ ℎ  ∈  𝐴 ∀ 𝑔  ∈  𝐴 ( ℎ  ↾  𝐸 )  =  ( 𝑔  ↾  𝐸 ) )  | 
						
						
							| 39 | 
							
								20 38
							 | 
							anbi12i | 
							⊢ ( ( 𝜑  ∧  ∀ 𝑓  ∈  𝐴 ∀ 𝑔  ∈  𝐴 ( 𝑓  ↾  𝐷 )  =  ( 𝑔  ↾  𝐷 ) )  ↔  ( 𝜑′  ∧  ∀ ℎ  ∈  𝐴 ∀ 𝑔  ∈  𝐴 ( ℎ  ↾  𝐸 )  =  ( 𝑔  ↾  𝐸 ) ) )  | 
						
						
							| 40 | 
							
								39 3 7
							 | 
							3bitr4i | 
							⊢ ( 𝜓  ↔  𝜓′ )  | 
						
						
							| 41 | 
							
								5 6 7
							 | 
							bnj1383 | 
							⊢ ( 𝜓′  →  Fun  ∪  𝐴 )  | 
						
						
							| 42 | 
							
								40 41
							 | 
							sylbi | 
							⊢ ( 𝜓  →  Fun  ∪  𝐴 )  |