Step |
Hyp |
Ref |
Expression |
1 |
|
bnj1385.1 |
⊢ ( 𝜑 ↔ ∀ 𝑓 ∈ 𝐴 Fun 𝑓 ) |
2 |
|
bnj1385.2 |
⊢ 𝐷 = ( dom 𝑓 ∩ dom 𝑔 ) |
3 |
|
bnj1385.3 |
⊢ ( 𝜓 ↔ ( 𝜑 ∧ ∀ 𝑓 ∈ 𝐴 ∀ 𝑔 ∈ 𝐴 ( 𝑓 ↾ 𝐷 ) = ( 𝑔 ↾ 𝐷 ) ) ) |
4 |
|
bnj1385.4 |
⊢ ( 𝑥 ∈ 𝐴 → ∀ 𝑓 𝑥 ∈ 𝐴 ) |
5 |
|
bnj1385.5 |
⊢ ( 𝜑′ ↔ ∀ ℎ ∈ 𝐴 Fun ℎ ) |
6 |
|
bnj1385.6 |
⊢ 𝐸 = ( dom ℎ ∩ dom 𝑔 ) |
7 |
|
bnj1385.7 |
⊢ ( 𝜓′ ↔ ( 𝜑′ ∧ ∀ ℎ ∈ 𝐴 ∀ 𝑔 ∈ 𝐴 ( ℎ ↾ 𝐸 ) = ( 𝑔 ↾ 𝐸 ) ) ) |
8 |
|
nfv |
⊢ Ⅎ ℎ ( 𝑓 ∈ 𝐴 → Fun 𝑓 ) |
9 |
4
|
nfcii |
⊢ Ⅎ 𝑓 𝐴 |
10 |
9
|
nfcri |
⊢ Ⅎ 𝑓 ℎ ∈ 𝐴 |
11 |
|
nfv |
⊢ Ⅎ 𝑓 Fun ℎ |
12 |
10 11
|
nfim |
⊢ Ⅎ 𝑓 ( ℎ ∈ 𝐴 → Fun ℎ ) |
13 |
|
eleq1w |
⊢ ( 𝑓 = ℎ → ( 𝑓 ∈ 𝐴 ↔ ℎ ∈ 𝐴 ) ) |
14 |
|
funeq |
⊢ ( 𝑓 = ℎ → ( Fun 𝑓 ↔ Fun ℎ ) ) |
15 |
13 14
|
imbi12d |
⊢ ( 𝑓 = ℎ → ( ( 𝑓 ∈ 𝐴 → Fun 𝑓 ) ↔ ( ℎ ∈ 𝐴 → Fun ℎ ) ) ) |
16 |
8 12 15
|
cbvalv1 |
⊢ ( ∀ 𝑓 ( 𝑓 ∈ 𝐴 → Fun 𝑓 ) ↔ ∀ ℎ ( ℎ ∈ 𝐴 → Fun ℎ ) ) |
17 |
|
df-ral |
⊢ ( ∀ 𝑓 ∈ 𝐴 Fun 𝑓 ↔ ∀ 𝑓 ( 𝑓 ∈ 𝐴 → Fun 𝑓 ) ) |
18 |
|
df-ral |
⊢ ( ∀ ℎ ∈ 𝐴 Fun ℎ ↔ ∀ ℎ ( ℎ ∈ 𝐴 → Fun ℎ ) ) |
19 |
16 17 18
|
3bitr4i |
⊢ ( ∀ 𝑓 ∈ 𝐴 Fun 𝑓 ↔ ∀ ℎ ∈ 𝐴 Fun ℎ ) |
20 |
19 1 5
|
3bitr4i |
⊢ ( 𝜑 ↔ 𝜑′ ) |
21 |
|
nfv |
⊢ Ⅎ ℎ ( 𝑓 ∈ 𝐴 → ∀ 𝑔 ∈ 𝐴 ( 𝑓 ↾ 𝐷 ) = ( 𝑔 ↾ 𝐷 ) ) |
22 |
|
nfv |
⊢ Ⅎ 𝑓 ( ℎ ↾ 𝐸 ) = ( 𝑔 ↾ 𝐸 ) |
23 |
9 22
|
nfralw |
⊢ Ⅎ 𝑓 ∀ 𝑔 ∈ 𝐴 ( ℎ ↾ 𝐸 ) = ( 𝑔 ↾ 𝐸 ) |
24 |
10 23
|
nfim |
⊢ Ⅎ 𝑓 ( ℎ ∈ 𝐴 → ∀ 𝑔 ∈ 𝐴 ( ℎ ↾ 𝐸 ) = ( 𝑔 ↾ 𝐸 ) ) |
25 |
|
dmeq |
⊢ ( 𝑓 = ℎ → dom 𝑓 = dom ℎ ) |
26 |
25
|
ineq1d |
⊢ ( 𝑓 = ℎ → ( dom 𝑓 ∩ dom 𝑔 ) = ( dom ℎ ∩ dom 𝑔 ) ) |
27 |
26 2 6
|
3eqtr4g |
⊢ ( 𝑓 = ℎ → 𝐷 = 𝐸 ) |
28 |
27
|
reseq2d |
⊢ ( 𝑓 = ℎ → ( 𝑓 ↾ 𝐷 ) = ( 𝑓 ↾ 𝐸 ) ) |
29 |
|
reseq1 |
⊢ ( 𝑓 = ℎ → ( 𝑓 ↾ 𝐸 ) = ( ℎ ↾ 𝐸 ) ) |
30 |
28 29
|
eqtrd |
⊢ ( 𝑓 = ℎ → ( 𝑓 ↾ 𝐷 ) = ( ℎ ↾ 𝐸 ) ) |
31 |
27
|
reseq2d |
⊢ ( 𝑓 = ℎ → ( 𝑔 ↾ 𝐷 ) = ( 𝑔 ↾ 𝐸 ) ) |
32 |
30 31
|
eqeq12d |
⊢ ( 𝑓 = ℎ → ( ( 𝑓 ↾ 𝐷 ) = ( 𝑔 ↾ 𝐷 ) ↔ ( ℎ ↾ 𝐸 ) = ( 𝑔 ↾ 𝐸 ) ) ) |
33 |
32
|
ralbidv |
⊢ ( 𝑓 = ℎ → ( ∀ 𝑔 ∈ 𝐴 ( 𝑓 ↾ 𝐷 ) = ( 𝑔 ↾ 𝐷 ) ↔ ∀ 𝑔 ∈ 𝐴 ( ℎ ↾ 𝐸 ) = ( 𝑔 ↾ 𝐸 ) ) ) |
34 |
13 33
|
imbi12d |
⊢ ( 𝑓 = ℎ → ( ( 𝑓 ∈ 𝐴 → ∀ 𝑔 ∈ 𝐴 ( 𝑓 ↾ 𝐷 ) = ( 𝑔 ↾ 𝐷 ) ) ↔ ( ℎ ∈ 𝐴 → ∀ 𝑔 ∈ 𝐴 ( ℎ ↾ 𝐸 ) = ( 𝑔 ↾ 𝐸 ) ) ) ) |
35 |
21 24 34
|
cbvalv1 |
⊢ ( ∀ 𝑓 ( 𝑓 ∈ 𝐴 → ∀ 𝑔 ∈ 𝐴 ( 𝑓 ↾ 𝐷 ) = ( 𝑔 ↾ 𝐷 ) ) ↔ ∀ ℎ ( ℎ ∈ 𝐴 → ∀ 𝑔 ∈ 𝐴 ( ℎ ↾ 𝐸 ) = ( 𝑔 ↾ 𝐸 ) ) ) |
36 |
|
df-ral |
⊢ ( ∀ 𝑓 ∈ 𝐴 ∀ 𝑔 ∈ 𝐴 ( 𝑓 ↾ 𝐷 ) = ( 𝑔 ↾ 𝐷 ) ↔ ∀ 𝑓 ( 𝑓 ∈ 𝐴 → ∀ 𝑔 ∈ 𝐴 ( 𝑓 ↾ 𝐷 ) = ( 𝑔 ↾ 𝐷 ) ) ) |
37 |
|
df-ral |
⊢ ( ∀ ℎ ∈ 𝐴 ∀ 𝑔 ∈ 𝐴 ( ℎ ↾ 𝐸 ) = ( 𝑔 ↾ 𝐸 ) ↔ ∀ ℎ ( ℎ ∈ 𝐴 → ∀ 𝑔 ∈ 𝐴 ( ℎ ↾ 𝐸 ) = ( 𝑔 ↾ 𝐸 ) ) ) |
38 |
35 36 37
|
3bitr4i |
⊢ ( ∀ 𝑓 ∈ 𝐴 ∀ 𝑔 ∈ 𝐴 ( 𝑓 ↾ 𝐷 ) = ( 𝑔 ↾ 𝐷 ) ↔ ∀ ℎ ∈ 𝐴 ∀ 𝑔 ∈ 𝐴 ( ℎ ↾ 𝐸 ) = ( 𝑔 ↾ 𝐸 ) ) |
39 |
20 38
|
anbi12i |
⊢ ( ( 𝜑 ∧ ∀ 𝑓 ∈ 𝐴 ∀ 𝑔 ∈ 𝐴 ( 𝑓 ↾ 𝐷 ) = ( 𝑔 ↾ 𝐷 ) ) ↔ ( 𝜑′ ∧ ∀ ℎ ∈ 𝐴 ∀ 𝑔 ∈ 𝐴 ( ℎ ↾ 𝐸 ) = ( 𝑔 ↾ 𝐸 ) ) ) |
40 |
39 3 7
|
3bitr4i |
⊢ ( 𝜓 ↔ 𝜓′ ) |
41 |
5 6 7
|
bnj1383 |
⊢ ( 𝜓′ → Fun ∪ 𝐴 ) |
42 |
40 41
|
sylbi |
⊢ ( 𝜓 → Fun ∪ 𝐴 ) |