Metamath Proof Explorer


Theorem bnj1386

Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (New usage is discouraged.)

Ref Expression
Hypotheses bnj1386.1 ( 𝜑 ↔ ∀ 𝑓𝐴 Fun 𝑓 )
bnj1386.2 𝐷 = ( dom 𝑓 ∩ dom 𝑔 )
bnj1386.3 ( 𝜓 ↔ ( 𝜑 ∧ ∀ 𝑓𝐴𝑔𝐴 ( 𝑓𝐷 ) = ( 𝑔𝐷 ) ) )
bnj1386.4 ( 𝑥𝐴 → ∀ 𝑓 𝑥𝐴 )
Assertion bnj1386 ( 𝜓 → Fun 𝐴 )

Proof

Step Hyp Ref Expression
1 bnj1386.1 ( 𝜑 ↔ ∀ 𝑓𝐴 Fun 𝑓 )
2 bnj1386.2 𝐷 = ( dom 𝑓 ∩ dom 𝑔 )
3 bnj1386.3 ( 𝜓 ↔ ( 𝜑 ∧ ∀ 𝑓𝐴𝑔𝐴 ( 𝑓𝐷 ) = ( 𝑔𝐷 ) ) )
4 bnj1386.4 ( 𝑥𝐴 → ∀ 𝑓 𝑥𝐴 )
5 biid ( ∀ 𝐴 Fun ↔ ∀ 𝐴 Fun )
6 eqid ( dom ∩ dom 𝑔 ) = ( dom ∩ dom 𝑔 )
7 biid ( ( ∀ 𝐴 Fun ∧ ∀ 𝐴𝑔𝐴 ( ↾ ( dom ∩ dom 𝑔 ) ) = ( 𝑔 ↾ ( dom ∩ dom 𝑔 ) ) ) ↔ ( ∀ 𝐴 Fun ∧ ∀ 𝐴𝑔𝐴 ( ↾ ( dom ∩ dom 𝑔 ) ) = ( 𝑔 ↾ ( dom ∩ dom 𝑔 ) ) ) )
8 1 2 3 4 5 6 7 bnj1385 ( 𝜓 → Fun 𝐴 )