Step |
Hyp |
Ref |
Expression |
1 |
|
bnj1386.1 |
⊢ ( 𝜑 ↔ ∀ 𝑓 ∈ 𝐴 Fun 𝑓 ) |
2 |
|
bnj1386.2 |
⊢ 𝐷 = ( dom 𝑓 ∩ dom 𝑔 ) |
3 |
|
bnj1386.3 |
⊢ ( 𝜓 ↔ ( 𝜑 ∧ ∀ 𝑓 ∈ 𝐴 ∀ 𝑔 ∈ 𝐴 ( 𝑓 ↾ 𝐷 ) = ( 𝑔 ↾ 𝐷 ) ) ) |
4 |
|
bnj1386.4 |
⊢ ( 𝑥 ∈ 𝐴 → ∀ 𝑓 𝑥 ∈ 𝐴 ) |
5 |
|
biid |
⊢ ( ∀ ℎ ∈ 𝐴 Fun ℎ ↔ ∀ ℎ ∈ 𝐴 Fun ℎ ) |
6 |
|
eqid |
⊢ ( dom ℎ ∩ dom 𝑔 ) = ( dom ℎ ∩ dom 𝑔 ) |
7 |
|
biid |
⊢ ( ( ∀ ℎ ∈ 𝐴 Fun ℎ ∧ ∀ ℎ ∈ 𝐴 ∀ 𝑔 ∈ 𝐴 ( ℎ ↾ ( dom ℎ ∩ dom 𝑔 ) ) = ( 𝑔 ↾ ( dom ℎ ∩ dom 𝑔 ) ) ) ↔ ( ∀ ℎ ∈ 𝐴 Fun ℎ ∧ ∀ ℎ ∈ 𝐴 ∀ 𝑔 ∈ 𝐴 ( ℎ ↾ ( dom ℎ ∩ dom 𝑔 ) ) = ( 𝑔 ↾ ( dom ℎ ∩ dom 𝑔 ) ) ) ) |
8 |
1 2 3 4 5 6 7
|
bnj1385 |
⊢ ( 𝜓 → Fun ∪ 𝐴 ) |