| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							bnj1388.1 | 
							⊢ 𝐵  =  { 𝑑  ∣  ( 𝑑  ⊆  𝐴  ∧  ∀ 𝑥  ∈  𝑑  pred ( 𝑥 ,  𝐴 ,  𝑅 )  ⊆  𝑑 ) }  | 
						
						
							| 2 | 
							
								
							 | 
							bnj1388.2 | 
							⊢ 𝑌  =  〈 𝑥 ,  ( 𝑓  ↾   pred ( 𝑥 ,  𝐴 ,  𝑅 ) ) 〉  | 
						
						
							| 3 | 
							
								
							 | 
							bnj1388.3 | 
							⊢ 𝐶  =  { 𝑓  ∣  ∃ 𝑑  ∈  𝐵 ( 𝑓  Fn  𝑑  ∧  ∀ 𝑥  ∈  𝑑 ( 𝑓 ‘ 𝑥 )  =  ( 𝐺 ‘ 𝑌 ) ) }  | 
						
						
							| 4 | 
							
								
							 | 
							bnj1388.4 | 
							⊢ ( 𝜏  ↔  ( 𝑓  ∈  𝐶  ∧  dom  𝑓  =  ( { 𝑥 }  ∪   trCl ( 𝑥 ,  𝐴 ,  𝑅 ) ) ) )  | 
						
						
							| 5 | 
							
								
							 | 
							bnj1388.5 | 
							⊢ 𝐷  =  { 𝑥  ∈  𝐴  ∣  ¬  ∃ 𝑓 𝜏 }  | 
						
						
							| 6 | 
							
								
							 | 
							bnj1388.6 | 
							⊢ ( 𝜓  ↔  ( 𝑅  FrSe  𝐴  ∧  𝐷  ≠  ∅ ) )  | 
						
						
							| 7 | 
							
								
							 | 
							bnj1388.7 | 
							⊢ ( 𝜒  ↔  ( 𝜓  ∧  𝑥  ∈  𝐷  ∧  ∀ 𝑦  ∈  𝐷 ¬  𝑦 𝑅 𝑥 ) )  | 
						
						
							| 8 | 
							
								
							 | 
							bnj1388.8 | 
							⊢ ( 𝜏′  ↔  [ 𝑦  /  𝑥 ] 𝜏 )  | 
						
						
							| 9 | 
							
								
							 | 
							nfv | 
							⊢ Ⅎ 𝑦 𝜓  | 
						
						
							| 10 | 
							
								
							 | 
							nfv | 
							⊢ Ⅎ 𝑦 𝑥  ∈  𝐷  | 
						
						
							| 11 | 
							
								
							 | 
							nfra1 | 
							⊢ Ⅎ 𝑦 ∀ 𝑦  ∈  𝐷 ¬  𝑦 𝑅 𝑥  | 
						
						
							| 12 | 
							
								9 10 11
							 | 
							nf3an | 
							⊢ Ⅎ 𝑦 ( 𝜓  ∧  𝑥  ∈  𝐷  ∧  ∀ 𝑦  ∈  𝐷 ¬  𝑦 𝑅 𝑥 )  | 
						
						
							| 13 | 
							
								7 12
							 | 
							nfxfr | 
							⊢ Ⅎ 𝑦 𝜒  | 
						
						
							| 14 | 
							
								
							 | 
							bnj1152 | 
							⊢ ( 𝑦  ∈   pred ( 𝑥 ,  𝐴 ,  𝑅 )  ↔  ( 𝑦  ∈  𝐴  ∧  𝑦 𝑅 𝑥 ) )  | 
						
						
							| 15 | 
							
								14
							 | 
							simplbi | 
							⊢ ( 𝑦  ∈   pred ( 𝑥 ,  𝐴 ,  𝑅 )  →  𝑦  ∈  𝐴 )  | 
						
						
							| 16 | 
							
								15
							 | 
							adantl | 
							⊢ ( ( 𝜒  ∧  𝑦  ∈   pred ( 𝑥 ,  𝐴 ,  𝑅 ) )  →  𝑦  ∈  𝐴 )  | 
						
						
							| 17 | 
							
								14
							 | 
							biimpi | 
							⊢ ( 𝑦  ∈   pred ( 𝑥 ,  𝐴 ,  𝑅 )  →  ( 𝑦  ∈  𝐴  ∧  𝑦 𝑅 𝑥 ) )  | 
						
						
							| 18 | 
							
								17
							 | 
							adantl | 
							⊢ ( ( 𝜒  ∧  𝑦  ∈   pred ( 𝑥 ,  𝐴 ,  𝑅 ) )  →  ( 𝑦  ∈  𝐴  ∧  𝑦 𝑅 𝑥 ) )  | 
						
						
							| 19 | 
							
								18
							 | 
							simprd | 
							⊢ ( ( 𝜒  ∧  𝑦  ∈   pred ( 𝑥 ,  𝐴 ,  𝑅 ) )  →  𝑦 𝑅 𝑥 )  | 
						
						
							| 20 | 
							
								7
							 | 
							simp3bi | 
							⊢ ( 𝜒  →  ∀ 𝑦  ∈  𝐷 ¬  𝑦 𝑅 𝑥 )  | 
						
						
							| 21 | 
							
								20
							 | 
							adantr | 
							⊢ ( ( 𝜒  ∧  𝑦  ∈   pred ( 𝑥 ,  𝐴 ,  𝑅 ) )  →  ∀ 𝑦  ∈  𝐷 ¬  𝑦 𝑅 𝑥 )  | 
						
						
							| 22 | 
							
								
							 | 
							df-ral | 
							⊢ ( ∀ 𝑦  ∈  𝐷 ¬  𝑦 𝑅 𝑥  ↔  ∀ 𝑦 ( 𝑦  ∈  𝐷  →  ¬  𝑦 𝑅 𝑥 ) )  | 
						
						
							| 23 | 
							
								
							 | 
							con2b | 
							⊢ ( ( 𝑦  ∈  𝐷  →  ¬  𝑦 𝑅 𝑥 )  ↔  ( 𝑦 𝑅 𝑥  →  ¬  𝑦  ∈  𝐷 ) )  | 
						
						
							| 24 | 
							
								23
							 | 
							albii | 
							⊢ ( ∀ 𝑦 ( 𝑦  ∈  𝐷  →  ¬  𝑦 𝑅 𝑥 )  ↔  ∀ 𝑦 ( 𝑦 𝑅 𝑥  →  ¬  𝑦  ∈  𝐷 ) )  | 
						
						
							| 25 | 
							
								22 24
							 | 
							bitri | 
							⊢ ( ∀ 𝑦  ∈  𝐷 ¬  𝑦 𝑅 𝑥  ↔  ∀ 𝑦 ( 𝑦 𝑅 𝑥  →  ¬  𝑦  ∈  𝐷 ) )  | 
						
						
							| 26 | 
							
								
							 | 
							sp | 
							⊢ ( ∀ 𝑦 ( 𝑦 𝑅 𝑥  →  ¬  𝑦  ∈  𝐷 )  →  ( 𝑦 𝑅 𝑥  →  ¬  𝑦  ∈  𝐷 ) )  | 
						
						
							| 27 | 
							
								26
							 | 
							impcom | 
							⊢ ( ( 𝑦 𝑅 𝑥  ∧  ∀ 𝑦 ( 𝑦 𝑅 𝑥  →  ¬  𝑦  ∈  𝐷 ) )  →  ¬  𝑦  ∈  𝐷 )  | 
						
						
							| 28 | 
							
								25 27
							 | 
							sylan2b | 
							⊢ ( ( 𝑦 𝑅 𝑥  ∧  ∀ 𝑦  ∈  𝐷 ¬  𝑦 𝑅 𝑥 )  →  ¬  𝑦  ∈  𝐷 )  | 
						
						
							| 29 | 
							
								19 21 28
							 | 
							syl2anc | 
							⊢ ( ( 𝜒  ∧  𝑦  ∈   pred ( 𝑥 ,  𝐴 ,  𝑅 ) )  →  ¬  𝑦  ∈  𝐷 )  | 
						
						
							| 30 | 
							
								5
							 | 
							eleq2i | 
							⊢ ( 𝑦  ∈  𝐷  ↔  𝑦  ∈  { 𝑥  ∈  𝐴  ∣  ¬  ∃ 𝑓 𝜏 } )  | 
						
						
							| 31 | 
							
								
							 | 
							nfcv | 
							⊢ Ⅎ 𝑥 𝑦  | 
						
						
							| 32 | 
							
								
							 | 
							nfcv | 
							⊢ Ⅎ 𝑥 𝐴  | 
						
						
							| 33 | 
							
								
							 | 
							nfsbc1v | 
							⊢ Ⅎ 𝑥 [ 𝑦  /  𝑥 ] 𝜏  | 
						
						
							| 34 | 
							
								8 33
							 | 
							nfxfr | 
							⊢ Ⅎ 𝑥 𝜏′  | 
						
						
							| 35 | 
							
								34
							 | 
							nfex | 
							⊢ Ⅎ 𝑥 ∃ 𝑓 𝜏′  | 
						
						
							| 36 | 
							
								35
							 | 
							nfn | 
							⊢ Ⅎ 𝑥 ¬  ∃ 𝑓 𝜏′  | 
						
						
							| 37 | 
							
								
							 | 
							sbceq1a | 
							⊢ ( 𝑥  =  𝑦  →  ( 𝜏  ↔  [ 𝑦  /  𝑥 ] 𝜏 ) )  | 
						
						
							| 38 | 
							
								37 8
							 | 
							bitr4di | 
							⊢ ( 𝑥  =  𝑦  →  ( 𝜏  ↔  𝜏′ ) )  | 
						
						
							| 39 | 
							
								38
							 | 
							exbidv | 
							⊢ ( 𝑥  =  𝑦  →  ( ∃ 𝑓 𝜏  ↔  ∃ 𝑓 𝜏′ ) )  | 
						
						
							| 40 | 
							
								39
							 | 
							notbid | 
							⊢ ( 𝑥  =  𝑦  →  ( ¬  ∃ 𝑓 𝜏  ↔  ¬  ∃ 𝑓 𝜏′ ) )  | 
						
						
							| 41 | 
							
								31 32 36 40
							 | 
							elrabf | 
							⊢ ( 𝑦  ∈  { 𝑥  ∈  𝐴  ∣  ¬  ∃ 𝑓 𝜏 }  ↔  ( 𝑦  ∈  𝐴  ∧  ¬  ∃ 𝑓 𝜏′ ) )  | 
						
						
							| 42 | 
							
								30 41
							 | 
							bitri | 
							⊢ ( 𝑦  ∈  𝐷  ↔  ( 𝑦  ∈  𝐴  ∧  ¬  ∃ 𝑓 𝜏′ ) )  | 
						
						
							| 43 | 
							
								29 42
							 | 
							sylnib | 
							⊢ ( ( 𝜒  ∧  𝑦  ∈   pred ( 𝑥 ,  𝐴 ,  𝑅 ) )  →  ¬  ( 𝑦  ∈  𝐴  ∧  ¬  ∃ 𝑓 𝜏′ ) )  | 
						
						
							| 44 | 
							
								
							 | 
							iman | 
							⊢ ( ( 𝑦  ∈  𝐴  →  ∃ 𝑓 𝜏′ )  ↔  ¬  ( 𝑦  ∈  𝐴  ∧  ¬  ∃ 𝑓 𝜏′ ) )  | 
						
						
							| 45 | 
							
								43 44
							 | 
							sylibr | 
							⊢ ( ( 𝜒  ∧  𝑦  ∈   pred ( 𝑥 ,  𝐴 ,  𝑅 ) )  →  ( 𝑦  ∈  𝐴  →  ∃ 𝑓 𝜏′ ) )  | 
						
						
							| 46 | 
							
								16 45
							 | 
							mpd | 
							⊢ ( ( 𝜒  ∧  𝑦  ∈   pred ( 𝑥 ,  𝐴 ,  𝑅 ) )  →  ∃ 𝑓 𝜏′ )  | 
						
						
							| 47 | 
							
								46
							 | 
							ex | 
							⊢ ( 𝜒  →  ( 𝑦  ∈   pred ( 𝑥 ,  𝐴 ,  𝑅 )  →  ∃ 𝑓 𝜏′ ) )  | 
						
						
							| 48 | 
							
								13 47
							 | 
							ralrimi | 
							⊢ ( 𝜒  →  ∀ 𝑦  ∈   pred ( 𝑥 ,  𝐴 ,  𝑅 ) ∃ 𝑓 𝜏′ )  |