| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							bnj1400.1 | 
							⊢ ( 𝑦  ∈  𝐴  →  ∀ 𝑥 𝑦  ∈  𝐴 )  | 
						
						
							| 2 | 
							
								
							 | 
							dmuni | 
							⊢ dom  ∪  𝐴  =  ∪  𝑧  ∈  𝐴 dom  𝑧  | 
						
						
							| 3 | 
							
								
							 | 
							df-iun | 
							⊢ ∪  𝑥  ∈  𝐴 dom  𝑥  =  { 𝑦  ∣  ∃ 𝑥  ∈  𝐴 𝑦  ∈  dom  𝑥 }  | 
						
						
							| 4 | 
							
								
							 | 
							df-iun | 
							⊢ ∪  𝑧  ∈  𝐴 dom  𝑧  =  { 𝑦  ∣  ∃ 𝑧  ∈  𝐴 𝑦  ∈  dom  𝑧 }  | 
						
						
							| 5 | 
							
								1
							 | 
							nfcii | 
							⊢ Ⅎ 𝑥 𝐴  | 
						
						
							| 6 | 
							
								
							 | 
							nfcv | 
							⊢ Ⅎ 𝑧 𝐴  | 
						
						
							| 7 | 
							
								
							 | 
							nfv | 
							⊢ Ⅎ 𝑧 𝑦  ∈  dom  𝑥  | 
						
						
							| 8 | 
							
								
							 | 
							nfv | 
							⊢ Ⅎ 𝑥 𝑦  ∈  dom  𝑧  | 
						
						
							| 9 | 
							
								
							 | 
							dmeq | 
							⊢ ( 𝑥  =  𝑧  →  dom  𝑥  =  dom  𝑧 )  | 
						
						
							| 10 | 
							
								9
							 | 
							eleq2d | 
							⊢ ( 𝑥  =  𝑧  →  ( 𝑦  ∈  dom  𝑥  ↔  𝑦  ∈  dom  𝑧 ) )  | 
						
						
							| 11 | 
							
								5 6 7 8 10
							 | 
							cbvrexfw | 
							⊢ ( ∃ 𝑥  ∈  𝐴 𝑦  ∈  dom  𝑥  ↔  ∃ 𝑧  ∈  𝐴 𝑦  ∈  dom  𝑧 )  | 
						
						
							| 12 | 
							
								11
							 | 
							abbii | 
							⊢ { 𝑦  ∣  ∃ 𝑥  ∈  𝐴 𝑦  ∈  dom  𝑥 }  =  { 𝑦  ∣  ∃ 𝑧  ∈  𝐴 𝑦  ∈  dom  𝑧 }  | 
						
						
							| 13 | 
							
								4 12
							 | 
							eqtr4i | 
							⊢ ∪  𝑧  ∈  𝐴 dom  𝑧  =  { 𝑦  ∣  ∃ 𝑥  ∈  𝐴 𝑦  ∈  dom  𝑥 }  | 
						
						
							| 14 | 
							
								3 13
							 | 
							eqtr4i | 
							⊢ ∪  𝑥  ∈  𝐴 dom  𝑥  =  ∪  𝑧  ∈  𝐴 dom  𝑧  | 
						
						
							| 15 | 
							
								2 14
							 | 
							eqtr4i | 
							⊢ dom  ∪  𝐴  =  ∪  𝑥  ∈  𝐴 dom  𝑥  |