Step |
Hyp |
Ref |
Expression |
1 |
|
bnj1413.1 |
⊢ 𝐵 = ( pred ( 𝑋 , 𝐴 , 𝑅 ) ∪ ∪ 𝑦 ∈ pred ( 𝑋 , 𝐴 , 𝑅 ) trCl ( 𝑦 , 𝐴 , 𝑅 ) ) |
2 |
|
bnj1148 |
⊢ ( ( 𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴 ) → pred ( 𝑋 , 𝐴 , 𝑅 ) ∈ V ) |
3 |
|
bnj893 |
⊢ ( ( 𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴 ) → trCl ( 𝑋 , 𝐴 , 𝑅 ) ∈ V ) |
4 |
|
simp1 |
⊢ ( ( 𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴 ∧ 𝑦 ∈ trCl ( 𝑋 , 𝐴 , 𝑅 ) ) → 𝑅 FrSe 𝐴 ) |
5 |
|
bnj1127 |
⊢ ( 𝑦 ∈ trCl ( 𝑋 , 𝐴 , 𝑅 ) → 𝑦 ∈ 𝐴 ) |
6 |
5
|
3ad2ant3 |
⊢ ( ( 𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴 ∧ 𝑦 ∈ trCl ( 𝑋 , 𝐴 , 𝑅 ) ) → 𝑦 ∈ 𝐴 ) |
7 |
|
bnj893 |
⊢ ( ( 𝑅 FrSe 𝐴 ∧ 𝑦 ∈ 𝐴 ) → trCl ( 𝑦 , 𝐴 , 𝑅 ) ∈ V ) |
8 |
4 6 7
|
syl2anc |
⊢ ( ( 𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴 ∧ 𝑦 ∈ trCl ( 𝑋 , 𝐴 , 𝑅 ) ) → trCl ( 𝑦 , 𝐴 , 𝑅 ) ∈ V ) |
9 |
8
|
3expia |
⊢ ( ( 𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴 ) → ( 𝑦 ∈ trCl ( 𝑋 , 𝐴 , 𝑅 ) → trCl ( 𝑦 , 𝐴 , 𝑅 ) ∈ V ) ) |
10 |
9
|
ralrimiv |
⊢ ( ( 𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴 ) → ∀ 𝑦 ∈ trCl ( 𝑋 , 𝐴 , 𝑅 ) trCl ( 𝑦 , 𝐴 , 𝑅 ) ∈ V ) |
11 |
|
iunexg |
⊢ ( ( trCl ( 𝑋 , 𝐴 , 𝑅 ) ∈ V ∧ ∀ 𝑦 ∈ trCl ( 𝑋 , 𝐴 , 𝑅 ) trCl ( 𝑦 , 𝐴 , 𝑅 ) ∈ V ) → ∪ 𝑦 ∈ trCl ( 𝑋 , 𝐴 , 𝑅 ) trCl ( 𝑦 , 𝐴 , 𝑅 ) ∈ V ) |
12 |
3 10 11
|
syl2anc |
⊢ ( ( 𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴 ) → ∪ 𝑦 ∈ trCl ( 𝑋 , 𝐴 , 𝑅 ) trCl ( 𝑦 , 𝐴 , 𝑅 ) ∈ V ) |
13 |
2 12
|
bnj1149 |
⊢ ( ( 𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴 ) → ( pred ( 𝑋 , 𝐴 , 𝑅 ) ∪ ∪ 𝑦 ∈ trCl ( 𝑋 , 𝐴 , 𝑅 ) trCl ( 𝑦 , 𝐴 , 𝑅 ) ) ∈ V ) |
14 |
|
bnj906 |
⊢ ( ( 𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴 ) → pred ( 𝑋 , 𝐴 , 𝑅 ) ⊆ trCl ( 𝑋 , 𝐴 , 𝑅 ) ) |
15 |
|
iunss1 |
⊢ ( pred ( 𝑋 , 𝐴 , 𝑅 ) ⊆ trCl ( 𝑋 , 𝐴 , 𝑅 ) → ∪ 𝑦 ∈ pred ( 𝑋 , 𝐴 , 𝑅 ) trCl ( 𝑦 , 𝐴 , 𝑅 ) ⊆ ∪ 𝑦 ∈ trCl ( 𝑋 , 𝐴 , 𝑅 ) trCl ( 𝑦 , 𝐴 , 𝑅 ) ) |
16 |
|
unss2 |
⊢ ( ∪ 𝑦 ∈ pred ( 𝑋 , 𝐴 , 𝑅 ) trCl ( 𝑦 , 𝐴 , 𝑅 ) ⊆ ∪ 𝑦 ∈ trCl ( 𝑋 , 𝐴 , 𝑅 ) trCl ( 𝑦 , 𝐴 , 𝑅 ) → ( pred ( 𝑋 , 𝐴 , 𝑅 ) ∪ ∪ 𝑦 ∈ pred ( 𝑋 , 𝐴 , 𝑅 ) trCl ( 𝑦 , 𝐴 , 𝑅 ) ) ⊆ ( pred ( 𝑋 , 𝐴 , 𝑅 ) ∪ ∪ 𝑦 ∈ trCl ( 𝑋 , 𝐴 , 𝑅 ) trCl ( 𝑦 , 𝐴 , 𝑅 ) ) ) |
17 |
14 15 16
|
3syl |
⊢ ( ( 𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴 ) → ( pred ( 𝑋 , 𝐴 , 𝑅 ) ∪ ∪ 𝑦 ∈ pred ( 𝑋 , 𝐴 , 𝑅 ) trCl ( 𝑦 , 𝐴 , 𝑅 ) ) ⊆ ( pred ( 𝑋 , 𝐴 , 𝑅 ) ∪ ∪ 𝑦 ∈ trCl ( 𝑋 , 𝐴 , 𝑅 ) trCl ( 𝑦 , 𝐴 , 𝑅 ) ) ) |
18 |
1 17
|
eqsstrid |
⊢ ( ( 𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴 ) → 𝐵 ⊆ ( pred ( 𝑋 , 𝐴 , 𝑅 ) ∪ ∪ 𝑦 ∈ trCl ( 𝑋 , 𝐴 , 𝑅 ) trCl ( 𝑦 , 𝐴 , 𝑅 ) ) ) |
19 |
13 18
|
ssexd |
⊢ ( ( 𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴 ) → 𝐵 ∈ V ) |