Step |
Hyp |
Ref |
Expression |
1 |
|
bnj1414.1 |
⊢ 𝐵 = ( pred ( 𝑋 , 𝐴 , 𝑅 ) ∪ ∪ 𝑦 ∈ pred ( 𝑋 , 𝐴 , 𝑅 ) trCl ( 𝑦 , 𝐴 , 𝑅 ) ) |
2 |
|
eqid |
⊢ ( pred ( 𝑋 , 𝐴 , 𝑅 ) ∪ ∪ 𝑦 ∈ trCl ( 𝑋 , 𝐴 , 𝑅 ) trCl ( 𝑦 , 𝐴 , 𝑅 ) ) = ( pred ( 𝑋 , 𝐴 , 𝑅 ) ∪ ∪ 𝑦 ∈ trCl ( 𝑋 , 𝐴 , 𝑅 ) trCl ( 𝑦 , 𝐴 , 𝑅 ) ) |
3 |
|
biid |
⊢ ( ( 𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴 ) ↔ ( 𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴 ) ) |
4 |
|
biid |
⊢ ( ( 𝐵 ∈ V ∧ TrFo ( 𝐵 , 𝐴 , 𝑅 ) ∧ pred ( 𝑋 , 𝐴 , 𝑅 ) ⊆ 𝐵 ) ↔ ( 𝐵 ∈ V ∧ TrFo ( 𝐵 , 𝐴 , 𝑅 ) ∧ pred ( 𝑋 , 𝐴 , 𝑅 ) ⊆ 𝐵 ) ) |
5 |
1 2 3 4
|
bnj1408 |
⊢ ( ( 𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴 ) → trCl ( 𝑋 , 𝐴 , 𝑅 ) = 𝐵 ) |