Metamath Proof Explorer


Theorem bnj1414

Description: Property of _trCl . (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (New usage is discouraged.)

Ref Expression
Hypothesis bnj1414.1 𝐵 = ( pred ( 𝑋 , 𝐴 , 𝑅 ) ∪ 𝑦 ∈ pred ( 𝑋 , 𝐴 , 𝑅 ) trCl ( 𝑦 , 𝐴 , 𝑅 ) )
Assertion bnj1414 ( ( 𝑅 FrSe 𝐴𝑋𝐴 ) → trCl ( 𝑋 , 𝐴 , 𝑅 ) = 𝐵 )

Proof

Step Hyp Ref Expression
1 bnj1414.1 𝐵 = ( pred ( 𝑋 , 𝐴 , 𝑅 ) ∪ 𝑦 ∈ pred ( 𝑋 , 𝐴 , 𝑅 ) trCl ( 𝑦 , 𝐴 , 𝑅 ) )
2 eqid ( pred ( 𝑋 , 𝐴 , 𝑅 ) ∪ 𝑦 ∈ trCl ( 𝑋 , 𝐴 , 𝑅 ) trCl ( 𝑦 , 𝐴 , 𝑅 ) ) = ( pred ( 𝑋 , 𝐴 , 𝑅 ) ∪ 𝑦 ∈ trCl ( 𝑋 , 𝐴 , 𝑅 ) trCl ( 𝑦 , 𝐴 , 𝑅 ) )
3 biid ( ( 𝑅 FrSe 𝐴𝑋𝐴 ) ↔ ( 𝑅 FrSe 𝐴𝑋𝐴 ) )
4 biid ( ( 𝐵 ∈ V ∧ TrFo ( 𝐵 , 𝐴 , 𝑅 ) ∧ pred ( 𝑋 , 𝐴 , 𝑅 ) ⊆ 𝐵 ) ↔ ( 𝐵 ∈ V ∧ TrFo ( 𝐵 , 𝐴 , 𝑅 ) ∧ pred ( 𝑋 , 𝐴 , 𝑅 ) ⊆ 𝐵 ) )
5 1 2 3 4 bnj1408 ( ( 𝑅 FrSe 𝐴𝑋𝐴 ) → trCl ( 𝑋 , 𝐴 , 𝑅 ) = 𝐵 )