Step |
Hyp |
Ref |
Expression |
1 |
|
bnj1416.1 |
⊢ 𝐵 = { 𝑑 ∣ ( 𝑑 ⊆ 𝐴 ∧ ∀ 𝑥 ∈ 𝑑 pred ( 𝑥 , 𝐴 , 𝑅 ) ⊆ 𝑑 ) } |
2 |
|
bnj1416.2 |
⊢ 𝑌 = 〈 𝑥 , ( 𝑓 ↾ pred ( 𝑥 , 𝐴 , 𝑅 ) ) 〉 |
3 |
|
bnj1416.3 |
⊢ 𝐶 = { 𝑓 ∣ ∃ 𝑑 ∈ 𝐵 ( 𝑓 Fn 𝑑 ∧ ∀ 𝑥 ∈ 𝑑 ( 𝑓 ‘ 𝑥 ) = ( 𝐺 ‘ 𝑌 ) ) } |
4 |
|
bnj1416.4 |
⊢ ( 𝜏 ↔ ( 𝑓 ∈ 𝐶 ∧ dom 𝑓 = ( { 𝑥 } ∪ trCl ( 𝑥 , 𝐴 , 𝑅 ) ) ) ) |
5 |
|
bnj1416.5 |
⊢ 𝐷 = { 𝑥 ∈ 𝐴 ∣ ¬ ∃ 𝑓 𝜏 } |
6 |
|
bnj1416.6 |
⊢ ( 𝜓 ↔ ( 𝑅 FrSe 𝐴 ∧ 𝐷 ≠ ∅ ) ) |
7 |
|
bnj1416.7 |
⊢ ( 𝜒 ↔ ( 𝜓 ∧ 𝑥 ∈ 𝐷 ∧ ∀ 𝑦 ∈ 𝐷 ¬ 𝑦 𝑅 𝑥 ) ) |
8 |
|
bnj1416.8 |
⊢ ( 𝜏′ ↔ [ 𝑦 / 𝑥 ] 𝜏 ) |
9 |
|
bnj1416.9 |
⊢ 𝐻 = { 𝑓 ∣ ∃ 𝑦 ∈ pred ( 𝑥 , 𝐴 , 𝑅 ) 𝜏′ } |
10 |
|
bnj1416.10 |
⊢ 𝑃 = ∪ 𝐻 |
11 |
|
bnj1416.11 |
⊢ 𝑍 = 〈 𝑥 , ( 𝑃 ↾ pred ( 𝑥 , 𝐴 , 𝑅 ) ) 〉 |
12 |
|
bnj1416.12 |
⊢ 𝑄 = ( 𝑃 ∪ { 〈 𝑥 , ( 𝐺 ‘ 𝑍 ) 〉 } ) |
13 |
|
bnj1416.28 |
⊢ ( 𝜒 → dom 𝑃 = trCl ( 𝑥 , 𝐴 , 𝑅 ) ) |
14 |
12
|
dmeqi |
⊢ dom 𝑄 = dom ( 𝑃 ∪ { 〈 𝑥 , ( 𝐺 ‘ 𝑍 ) 〉 } ) |
15 |
|
dmun |
⊢ dom ( 𝑃 ∪ { 〈 𝑥 , ( 𝐺 ‘ 𝑍 ) 〉 } ) = ( dom 𝑃 ∪ dom { 〈 𝑥 , ( 𝐺 ‘ 𝑍 ) 〉 } ) |
16 |
|
fvex |
⊢ ( 𝐺 ‘ 𝑍 ) ∈ V |
17 |
16
|
dmsnop |
⊢ dom { 〈 𝑥 , ( 𝐺 ‘ 𝑍 ) 〉 } = { 𝑥 } |
18 |
17
|
uneq2i |
⊢ ( dom 𝑃 ∪ dom { 〈 𝑥 , ( 𝐺 ‘ 𝑍 ) 〉 } ) = ( dom 𝑃 ∪ { 𝑥 } ) |
19 |
14 15 18
|
3eqtri |
⊢ dom 𝑄 = ( dom 𝑃 ∪ { 𝑥 } ) |
20 |
13
|
uneq1d |
⊢ ( 𝜒 → ( dom 𝑃 ∪ { 𝑥 } ) = ( trCl ( 𝑥 , 𝐴 , 𝑅 ) ∪ { 𝑥 } ) ) |
21 |
|
uncom |
⊢ ( trCl ( 𝑥 , 𝐴 , 𝑅 ) ∪ { 𝑥 } ) = ( { 𝑥 } ∪ trCl ( 𝑥 , 𝐴 , 𝑅 ) ) |
22 |
20 21
|
eqtrdi |
⊢ ( 𝜒 → ( dom 𝑃 ∪ { 𝑥 } ) = ( { 𝑥 } ∪ trCl ( 𝑥 , 𝐴 , 𝑅 ) ) ) |
23 |
19 22
|
syl5eq |
⊢ ( 𝜒 → dom 𝑄 = ( { 𝑥 } ∪ trCl ( 𝑥 , 𝐴 , 𝑅 ) ) ) |