Metamath Proof Explorer


Theorem bnj1417

Description: Technical lemma for bnj60 . This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (Proof shortened by Mario Carneiro, 22-Dec-2016) (New usage is discouraged.)

Ref Expression
Hypotheses bnj1417.1 ( 𝜑𝑅 FrSe 𝐴 )
bnj1417.2 ( 𝜓 ↔ ¬ 𝑥 ∈ trCl ( 𝑥 , 𝐴 , 𝑅 ) )
bnj1417.3 ( 𝜒 ↔ ∀ 𝑦𝐴 ( 𝑦 𝑅 𝑥[ 𝑦 / 𝑥 ] 𝜓 ) )
bnj1417.4 ( 𝜃 ↔ ( 𝜑𝑥𝐴𝜒 ) )
bnj1417.5 𝐵 = ( pred ( 𝑥 , 𝐴 , 𝑅 ) ∪ 𝑦 ∈ pred ( 𝑥 , 𝐴 , 𝑅 ) trCl ( 𝑦 , 𝐴 , 𝑅 ) )
Assertion bnj1417 ( 𝜑 → ∀ 𝑥𝐴 ¬ 𝑥 ∈ trCl ( 𝑥 , 𝐴 , 𝑅 ) )

Proof

Step Hyp Ref Expression
1 bnj1417.1 ( 𝜑𝑅 FrSe 𝐴 )
2 bnj1417.2 ( 𝜓 ↔ ¬ 𝑥 ∈ trCl ( 𝑥 , 𝐴 , 𝑅 ) )
3 bnj1417.3 ( 𝜒 ↔ ∀ 𝑦𝐴 ( 𝑦 𝑅 𝑥[ 𝑦 / 𝑥 ] 𝜓 ) )
4 bnj1417.4 ( 𝜃 ↔ ( 𝜑𝑥𝐴𝜒 ) )
5 bnj1417.5 𝐵 = ( pred ( 𝑥 , 𝐴 , 𝑅 ) ∪ 𝑦 ∈ pred ( 𝑥 , 𝐴 , 𝑅 ) trCl ( 𝑦 , 𝐴 , 𝑅 ) )
6 1 biimpi ( 𝜑𝑅 FrSe 𝐴 )
7 bnj1418 ( 𝑥 ∈ pred ( 𝑥 , 𝐴 , 𝑅 ) → 𝑥 𝑅 𝑥 )
8 7 adantl ( ( 𝜃𝑥 ∈ pred ( 𝑥 , 𝐴 , 𝑅 ) ) → 𝑥 𝑅 𝑥 )
9 4 6 bnj835 ( 𝜃𝑅 FrSe 𝐴 )
10 df-bnj15 ( 𝑅 FrSe 𝐴 ↔ ( 𝑅 Fr 𝐴𝑅 Se 𝐴 ) )
11 10 simplbi ( 𝑅 FrSe 𝐴𝑅 Fr 𝐴 )
12 9 11 syl ( 𝜃𝑅 Fr 𝐴 )
13 bnj213 pred ( 𝑥 , 𝐴 , 𝑅 ) ⊆ 𝐴
14 13 sseli ( 𝑥 ∈ pred ( 𝑥 , 𝐴 , 𝑅 ) → 𝑥𝐴 )
15 frirr ( ( 𝑅 Fr 𝐴𝑥𝐴 ) → ¬ 𝑥 𝑅 𝑥 )
16 12 14 15 syl2an ( ( 𝜃𝑥 ∈ pred ( 𝑥 , 𝐴 , 𝑅 ) ) → ¬ 𝑥 𝑅 𝑥 )
17 8 16 pm2.65da ( 𝜃 → ¬ 𝑥 ∈ pred ( 𝑥 , 𝐴 , 𝑅 ) )
18 nfv 𝑦 𝜑
19 nfv 𝑦 𝑥𝐴
20 3 bnj1095 ( 𝜒 → ∀ 𝑦 𝜒 )
21 20 nf5i 𝑦 𝜒
22 18 19 21 nf3an 𝑦 ( 𝜑𝑥𝐴𝜒 )
23 4 22 nfxfr 𝑦 𝜃
24 9 ad2antrr ( ( ( 𝜃𝑦 ∈ pred ( 𝑥 , 𝐴 , 𝑅 ) ) ∧ 𝑥 ∈ trCl ( 𝑦 , 𝐴 , 𝑅 ) ) → 𝑅 FrSe 𝐴 )
25 simplr ( ( ( 𝜃𝑦 ∈ pred ( 𝑥 , 𝐴 , 𝑅 ) ) ∧ 𝑥 ∈ trCl ( 𝑦 , 𝐴 , 𝑅 ) ) → 𝑦 ∈ pred ( 𝑥 , 𝐴 , 𝑅 ) )
26 13 25 sselid ( ( ( 𝜃𝑦 ∈ pred ( 𝑥 , 𝐴 , 𝑅 ) ) ∧ 𝑥 ∈ trCl ( 𝑦 , 𝐴 , 𝑅 ) ) → 𝑦𝐴 )
27 simpr ( ( ( 𝜃𝑦 ∈ pred ( 𝑥 , 𝐴 , 𝑅 ) ) ∧ 𝑥 ∈ trCl ( 𝑦 , 𝐴 , 𝑅 ) ) → 𝑥 ∈ trCl ( 𝑦 , 𝐴 , 𝑅 ) )
28 bnj1125 ( ( 𝑅 FrSe 𝐴𝑦𝐴𝑥 ∈ trCl ( 𝑦 , 𝐴 , 𝑅 ) ) → trCl ( 𝑥 , 𝐴 , 𝑅 ) ⊆ trCl ( 𝑦 , 𝐴 , 𝑅 ) )
29 24 26 27 28 syl3anc ( ( ( 𝜃𝑦 ∈ pred ( 𝑥 , 𝐴 , 𝑅 ) ) ∧ 𝑥 ∈ trCl ( 𝑦 , 𝐴 , 𝑅 ) ) → trCl ( 𝑥 , 𝐴 , 𝑅 ) ⊆ trCl ( 𝑦 , 𝐴 , 𝑅 ) )
30 bnj1147 trCl ( 𝑦 , 𝐴 , 𝑅 ) ⊆ 𝐴
31 30 27 sselid ( ( ( 𝜃𝑦 ∈ pred ( 𝑥 , 𝐴 , 𝑅 ) ) ∧ 𝑥 ∈ trCl ( 𝑦 , 𝐴 , 𝑅 ) ) → 𝑥𝐴 )
32 bnj906 ( ( 𝑅 FrSe 𝐴𝑥𝐴 ) → pred ( 𝑥 , 𝐴 , 𝑅 ) ⊆ trCl ( 𝑥 , 𝐴 , 𝑅 ) )
33 24 31 32 syl2anc ( ( ( 𝜃𝑦 ∈ pred ( 𝑥 , 𝐴 , 𝑅 ) ) ∧ 𝑥 ∈ trCl ( 𝑦 , 𝐴 , 𝑅 ) ) → pred ( 𝑥 , 𝐴 , 𝑅 ) ⊆ trCl ( 𝑥 , 𝐴 , 𝑅 ) )
34 33 25 sseldd ( ( ( 𝜃𝑦 ∈ pred ( 𝑥 , 𝐴 , 𝑅 ) ) ∧ 𝑥 ∈ trCl ( 𝑦 , 𝐴 , 𝑅 ) ) → 𝑦 ∈ trCl ( 𝑥 , 𝐴 , 𝑅 ) )
35 29 34 sseldd ( ( ( 𝜃𝑦 ∈ pred ( 𝑥 , 𝐴 , 𝑅 ) ) ∧ 𝑥 ∈ trCl ( 𝑦 , 𝐴 , 𝑅 ) ) → 𝑦 ∈ trCl ( 𝑦 , 𝐴 , 𝑅 ) )
36 3 biimpi ( 𝜒 → ∀ 𝑦𝐴 ( 𝑦 𝑅 𝑥[ 𝑦 / 𝑥 ] 𝜓 ) )
37 4 36 bnj837 ( 𝜃 → ∀ 𝑦𝐴 ( 𝑦 𝑅 𝑥[ 𝑦 / 𝑥 ] 𝜓 ) )
38 37 ad2antrr ( ( ( 𝜃𝑦 ∈ pred ( 𝑥 , 𝐴 , 𝑅 ) ) ∧ 𝑥 ∈ trCl ( 𝑦 , 𝐴 , 𝑅 ) ) → ∀ 𝑦𝐴 ( 𝑦 𝑅 𝑥[ 𝑦 / 𝑥 ] 𝜓 ) )
39 bnj1418 ( 𝑦 ∈ pred ( 𝑥 , 𝐴 , 𝑅 ) → 𝑦 𝑅 𝑥 )
40 39 ad2antlr ( ( ( 𝜃𝑦 ∈ pred ( 𝑥 , 𝐴 , 𝑅 ) ) ∧ 𝑥 ∈ trCl ( 𝑦 , 𝐴 , 𝑅 ) ) → 𝑦 𝑅 𝑥 )
41 rsp ( ∀ 𝑦𝐴 ( 𝑦 𝑅 𝑥[ 𝑦 / 𝑥 ] 𝜓 ) → ( 𝑦𝐴 → ( 𝑦 𝑅 𝑥[ 𝑦 / 𝑥 ] 𝜓 ) ) )
42 38 26 40 41 syl3c ( ( ( 𝜃𝑦 ∈ pred ( 𝑥 , 𝐴 , 𝑅 ) ) ∧ 𝑥 ∈ trCl ( 𝑦 , 𝐴 , 𝑅 ) ) → [ 𝑦 / 𝑥 ] 𝜓 )
43 vex 𝑦 ∈ V
44 eleq1w ( 𝑥 = 𝑦 → ( 𝑥 ∈ trCl ( 𝑥 , 𝐴 , 𝑅 ) ↔ 𝑦 ∈ trCl ( 𝑥 , 𝐴 , 𝑅 ) ) )
45 bnj1318 ( 𝑥 = 𝑦 → trCl ( 𝑥 , 𝐴 , 𝑅 ) = trCl ( 𝑦 , 𝐴 , 𝑅 ) )
46 45 eleq2d ( 𝑥 = 𝑦 → ( 𝑦 ∈ trCl ( 𝑥 , 𝐴 , 𝑅 ) ↔ 𝑦 ∈ trCl ( 𝑦 , 𝐴 , 𝑅 ) ) )
47 44 46 bitrd ( 𝑥 = 𝑦 → ( 𝑥 ∈ trCl ( 𝑥 , 𝐴 , 𝑅 ) ↔ 𝑦 ∈ trCl ( 𝑦 , 𝐴 , 𝑅 ) ) )
48 47 notbid ( 𝑥 = 𝑦 → ( ¬ 𝑥 ∈ trCl ( 𝑥 , 𝐴 , 𝑅 ) ↔ ¬ 𝑦 ∈ trCl ( 𝑦 , 𝐴 , 𝑅 ) ) )
49 2 48 syl5bb ( 𝑥 = 𝑦 → ( 𝜓 ↔ ¬ 𝑦 ∈ trCl ( 𝑦 , 𝐴 , 𝑅 ) ) )
50 43 49 sbcie ( [ 𝑦 / 𝑥 ] 𝜓 ↔ ¬ 𝑦 ∈ trCl ( 𝑦 , 𝐴 , 𝑅 ) )
51 42 50 sylib ( ( ( 𝜃𝑦 ∈ pred ( 𝑥 , 𝐴 , 𝑅 ) ) ∧ 𝑥 ∈ trCl ( 𝑦 , 𝐴 , 𝑅 ) ) → ¬ 𝑦 ∈ trCl ( 𝑦 , 𝐴 , 𝑅 ) )
52 35 51 pm2.65da ( ( 𝜃𝑦 ∈ pred ( 𝑥 , 𝐴 , 𝑅 ) ) → ¬ 𝑥 ∈ trCl ( 𝑦 , 𝐴 , 𝑅 ) )
53 52 ex ( 𝜃 → ( 𝑦 ∈ pred ( 𝑥 , 𝐴 , 𝑅 ) → ¬ 𝑥 ∈ trCl ( 𝑦 , 𝐴 , 𝑅 ) ) )
54 23 53 ralrimi ( 𝜃 → ∀ 𝑦 ∈ pred ( 𝑥 , 𝐴 , 𝑅 ) ¬ 𝑥 ∈ trCl ( 𝑦 , 𝐴 , 𝑅 ) )
55 ralnex ( ∀ 𝑦 ∈ pred ( 𝑥 , 𝐴 , 𝑅 ) ¬ 𝑥 ∈ trCl ( 𝑦 , 𝐴 , 𝑅 ) ↔ ¬ ∃ 𝑦 ∈ pred ( 𝑥 , 𝐴 , 𝑅 ) 𝑥 ∈ trCl ( 𝑦 , 𝐴 , 𝑅 ) )
56 54 55 sylib ( 𝜃 → ¬ ∃ 𝑦 ∈ pred ( 𝑥 , 𝐴 , 𝑅 ) 𝑥 ∈ trCl ( 𝑦 , 𝐴 , 𝑅 ) )
57 eliun ( 𝑥 𝑦 ∈ pred ( 𝑥 , 𝐴 , 𝑅 ) trCl ( 𝑦 , 𝐴 , 𝑅 ) ↔ ∃ 𝑦 ∈ pred ( 𝑥 , 𝐴 , 𝑅 ) 𝑥 ∈ trCl ( 𝑦 , 𝐴 , 𝑅 ) )
58 56 57 sylnibr ( 𝜃 → ¬ 𝑥 𝑦 ∈ pred ( 𝑥 , 𝐴 , 𝑅 ) trCl ( 𝑦 , 𝐴 , 𝑅 ) )
59 ioran ( ¬ ( 𝑥 ∈ pred ( 𝑥 , 𝐴 , 𝑅 ) ∨ 𝑥 𝑦 ∈ pred ( 𝑥 , 𝐴 , 𝑅 ) trCl ( 𝑦 , 𝐴 , 𝑅 ) ) ↔ ( ¬ 𝑥 ∈ pred ( 𝑥 , 𝐴 , 𝑅 ) ∧ ¬ 𝑥 𝑦 ∈ pred ( 𝑥 , 𝐴 , 𝑅 ) trCl ( 𝑦 , 𝐴 , 𝑅 ) ) )
60 17 58 59 sylanbrc ( 𝜃 → ¬ ( 𝑥 ∈ pred ( 𝑥 , 𝐴 , 𝑅 ) ∨ 𝑥 𝑦 ∈ pred ( 𝑥 , 𝐴 , 𝑅 ) trCl ( 𝑦 , 𝐴 , 𝑅 ) ) )
61 4 simp2bi ( 𝜃𝑥𝐴 )
62 5 bnj1414 ( ( 𝑅 FrSe 𝐴𝑥𝐴 ) → trCl ( 𝑥 , 𝐴 , 𝑅 ) = 𝐵 )
63 9 61 62 syl2anc ( 𝜃 → trCl ( 𝑥 , 𝐴 , 𝑅 ) = 𝐵 )
64 63 eleq2d ( 𝜃 → ( 𝑥 ∈ trCl ( 𝑥 , 𝐴 , 𝑅 ) ↔ 𝑥𝐵 ) )
65 5 bnj1138 ( 𝑥𝐵 ↔ ( 𝑥 ∈ pred ( 𝑥 , 𝐴 , 𝑅 ) ∨ 𝑥 𝑦 ∈ pred ( 𝑥 , 𝐴 , 𝑅 ) trCl ( 𝑦 , 𝐴 , 𝑅 ) ) )
66 64 65 bitrdi ( 𝜃 → ( 𝑥 ∈ trCl ( 𝑥 , 𝐴 , 𝑅 ) ↔ ( 𝑥 ∈ pred ( 𝑥 , 𝐴 , 𝑅 ) ∨ 𝑥 𝑦 ∈ pred ( 𝑥 , 𝐴 , 𝑅 ) trCl ( 𝑦 , 𝐴 , 𝑅 ) ) ) )
67 60 66 mtbird ( 𝜃 → ¬ 𝑥 ∈ trCl ( 𝑥 , 𝐴 , 𝑅 ) )
68 67 2 sylibr ( 𝜃𝜓 )
69 4 68 sylbir ( ( 𝜑𝑥𝐴𝜒 ) → 𝜓 )
70 69 3exp ( 𝜑 → ( 𝑥𝐴 → ( 𝜒𝜓 ) ) )
71 70 ralrimiv ( 𝜑 → ∀ 𝑥𝐴 ( 𝜒𝜓 ) )
72 3 bnj1204 ( ( 𝑅 FrSe 𝐴 ∧ ∀ 𝑥𝐴 ( 𝜒𝜓 ) ) → ∀ 𝑥𝐴 𝜓 )
73 6 71 72 syl2anc ( 𝜑 → ∀ 𝑥𝐴 𝜓 )
74 2 ralbii ( ∀ 𝑥𝐴 𝜓 ↔ ∀ 𝑥𝐴 ¬ 𝑥 ∈ trCl ( 𝑥 , 𝐴 , 𝑅 ) )
75 73 74 sylib ( 𝜑 → ∀ 𝑥𝐴 ¬ 𝑥 ∈ trCl ( 𝑥 , 𝐴 , 𝑅 ) )