Metamath Proof Explorer


Theorem bnj1418

Description: Property of _pred . (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (New usage is discouraged.)

Ref Expression
Assertion bnj1418 ( 𝑦 ∈ pred ( 𝑥 , 𝐴 , 𝑅 ) → 𝑦 𝑅 𝑥 )

Proof

Step Hyp Ref Expression
1 breq1 ( 𝑧 = 𝑦 → ( 𝑧 𝑅 𝑥𝑦 𝑅 𝑥 ) )
2 df-bnj14 pred ( 𝑥 , 𝐴 , 𝑅 ) = { 𝑧𝐴𝑧 𝑅 𝑥 }
3 2 bnj1538 ( 𝑧 ∈ pred ( 𝑥 , 𝐴 , 𝑅 ) → 𝑧 𝑅 𝑥 )
4 1 3 vtoclga ( 𝑦 ∈ pred ( 𝑥 , 𝐴 , 𝑅 ) → 𝑦 𝑅 𝑥 )