Description: Property of _pred . (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Assertion | bnj1418 | ⊢ ( 𝑦 ∈ pred ( 𝑥 , 𝐴 , 𝑅 ) → 𝑦 𝑅 𝑥 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | breq1 | ⊢ ( 𝑧 = 𝑦 → ( 𝑧 𝑅 𝑥 ↔ 𝑦 𝑅 𝑥 ) ) | |
2 | df-bnj14 | ⊢ pred ( 𝑥 , 𝐴 , 𝑅 ) = { 𝑧 ∈ 𝐴 ∣ 𝑧 𝑅 𝑥 } | |
3 | 2 | bnj1538 | ⊢ ( 𝑧 ∈ pred ( 𝑥 , 𝐴 , 𝑅 ) → 𝑧 𝑅 𝑥 ) |
4 | 1 3 | vtoclga | ⊢ ( 𝑦 ∈ pred ( 𝑥 , 𝐴 , 𝑅 ) → 𝑦 𝑅 𝑥 ) |