Metamath Proof Explorer


Theorem bnj1423

Description: Technical lemma for bnj60 . This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (New usage is discouraged.)

Ref Expression
Hypotheses bnj1423.1 𝐵 = { 𝑑 ∣ ( 𝑑𝐴 ∧ ∀ 𝑥𝑑 pred ( 𝑥 , 𝐴 , 𝑅 ) ⊆ 𝑑 ) }
bnj1423.2 𝑌 = ⟨ 𝑥 , ( 𝑓 ↾ pred ( 𝑥 , 𝐴 , 𝑅 ) ) ⟩
bnj1423.3 𝐶 = { 𝑓 ∣ ∃ 𝑑𝐵 ( 𝑓 Fn 𝑑 ∧ ∀ 𝑥𝑑 ( 𝑓𝑥 ) = ( 𝐺𝑌 ) ) }
bnj1423.4 ( 𝜏 ↔ ( 𝑓𝐶 ∧ dom 𝑓 = ( { 𝑥 } ∪ trCl ( 𝑥 , 𝐴 , 𝑅 ) ) ) )
bnj1423.5 𝐷 = { 𝑥𝐴 ∣ ¬ ∃ 𝑓 𝜏 }
bnj1423.6 ( 𝜓 ↔ ( 𝑅 FrSe 𝐴𝐷 ≠ ∅ ) )
bnj1423.7 ( 𝜒 ↔ ( 𝜓𝑥𝐷 ∧ ∀ 𝑦𝐷 ¬ 𝑦 𝑅 𝑥 ) )
bnj1423.8 ( 𝜏′[ 𝑦 / 𝑥 ] 𝜏 )
bnj1423.9 𝐻 = { 𝑓 ∣ ∃ 𝑦 ∈ pred ( 𝑥 , 𝐴 , 𝑅 ) 𝜏′ }
bnj1423.10 𝑃 = 𝐻
bnj1423.11 𝑍 = ⟨ 𝑥 , ( 𝑃 ↾ pred ( 𝑥 , 𝐴 , 𝑅 ) ) ⟩
bnj1423.12 𝑄 = ( 𝑃 ∪ { ⟨ 𝑥 , ( 𝐺𝑍 ) ⟩ } )
bnj1423.13 𝑊 = ⟨ 𝑧 , ( 𝑄 ↾ pred ( 𝑧 , 𝐴 , 𝑅 ) ) ⟩
bnj1423.14 𝐸 = ( { 𝑥 } ∪ trCl ( 𝑥 , 𝐴 , 𝑅 ) )
bnj1423.15 ( 𝜒𝑃 Fn trCl ( 𝑥 , 𝐴 , 𝑅 ) )
bnj1423.16 ( 𝜒𝑄 Fn ( { 𝑥 } ∪ trCl ( 𝑥 , 𝐴 , 𝑅 ) ) )
Assertion bnj1423 ( 𝜒 → ∀ 𝑧𝐸 ( 𝑄𝑧 ) = ( 𝐺𝑊 ) )

Proof

Step Hyp Ref Expression
1 bnj1423.1 𝐵 = { 𝑑 ∣ ( 𝑑𝐴 ∧ ∀ 𝑥𝑑 pred ( 𝑥 , 𝐴 , 𝑅 ) ⊆ 𝑑 ) }
2 bnj1423.2 𝑌 = ⟨ 𝑥 , ( 𝑓 ↾ pred ( 𝑥 , 𝐴 , 𝑅 ) ) ⟩
3 bnj1423.3 𝐶 = { 𝑓 ∣ ∃ 𝑑𝐵 ( 𝑓 Fn 𝑑 ∧ ∀ 𝑥𝑑 ( 𝑓𝑥 ) = ( 𝐺𝑌 ) ) }
4 bnj1423.4 ( 𝜏 ↔ ( 𝑓𝐶 ∧ dom 𝑓 = ( { 𝑥 } ∪ trCl ( 𝑥 , 𝐴 , 𝑅 ) ) ) )
5 bnj1423.5 𝐷 = { 𝑥𝐴 ∣ ¬ ∃ 𝑓 𝜏 }
6 bnj1423.6 ( 𝜓 ↔ ( 𝑅 FrSe 𝐴𝐷 ≠ ∅ ) )
7 bnj1423.7 ( 𝜒 ↔ ( 𝜓𝑥𝐷 ∧ ∀ 𝑦𝐷 ¬ 𝑦 𝑅 𝑥 ) )
8 bnj1423.8 ( 𝜏′[ 𝑦 / 𝑥 ] 𝜏 )
9 bnj1423.9 𝐻 = { 𝑓 ∣ ∃ 𝑦 ∈ pred ( 𝑥 , 𝐴 , 𝑅 ) 𝜏′ }
10 bnj1423.10 𝑃 = 𝐻
11 bnj1423.11 𝑍 = ⟨ 𝑥 , ( 𝑃 ↾ pred ( 𝑥 , 𝐴 , 𝑅 ) ) ⟩
12 bnj1423.12 𝑄 = ( 𝑃 ∪ { ⟨ 𝑥 , ( 𝐺𝑍 ) ⟩ } )
13 bnj1423.13 𝑊 = ⟨ 𝑧 , ( 𝑄 ↾ pred ( 𝑧 , 𝐴 , 𝑅 ) ) ⟩
14 bnj1423.14 𝐸 = ( { 𝑥 } ∪ trCl ( 𝑥 , 𝐴 , 𝑅 ) )
15 bnj1423.15 ( 𝜒𝑃 Fn trCl ( 𝑥 , 𝐴 , 𝑅 ) )
16 bnj1423.16 ( 𝜒𝑄 Fn ( { 𝑥 } ∪ trCl ( 𝑥 , 𝐴 , 𝑅 ) ) )
17 biid ( ( 𝜒𝑧𝐸 ) ↔ ( 𝜒𝑧𝐸 ) )
18 biid ( ( ( 𝜒𝑧𝐸 ) ∧ 𝑧 ∈ { 𝑥 } ) ↔ ( ( 𝜒𝑧𝐸 ) ∧ 𝑧 ∈ { 𝑥 } ) )
19 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 bnj1442 ( ( ( 𝜒𝑧𝐸 ) ∧ 𝑧 ∈ { 𝑥 } ) → ( 𝑄𝑧 ) = ( 𝐺𝑊 ) )
20 biid ( ( ( 𝜒𝑧𝐸 ) ∧ 𝑧 ∈ trCl ( 𝑥 , 𝐴 , 𝑅 ) ) ↔ ( ( 𝜒𝑧𝐸 ) ∧ 𝑧 ∈ trCl ( 𝑥 , 𝐴 , 𝑅 ) ) )
21 biid ( ( ( ( 𝜒𝑧𝐸 ) ∧ 𝑧 ∈ trCl ( 𝑥 , 𝐴 , 𝑅 ) ) ∧ 𝑓𝐻𝑧 ∈ dom 𝑓 ) ↔ ( ( ( 𝜒𝑧𝐸 ) ∧ 𝑧 ∈ trCl ( 𝑥 , 𝐴 , 𝑅 ) ) ∧ 𝑓𝐻𝑧 ∈ dom 𝑓 ) )
22 biid ( ( ( ( ( 𝜒𝑧𝐸 ) ∧ 𝑧 ∈ trCl ( 𝑥 , 𝐴 , 𝑅 ) ) ∧ 𝑓𝐻𝑧 ∈ dom 𝑓 ) ∧ 𝑦 ∈ pred ( 𝑥 , 𝐴 , 𝑅 ) ∧ 𝑓𝐶 ∧ dom 𝑓 = ( { 𝑦 } ∪ trCl ( 𝑦 , 𝐴 , 𝑅 ) ) ) ↔ ( ( ( ( 𝜒𝑧𝐸 ) ∧ 𝑧 ∈ trCl ( 𝑥 , 𝐴 , 𝑅 ) ) ∧ 𝑓𝐻𝑧 ∈ dom 𝑓 ) ∧ 𝑦 ∈ pred ( 𝑥 , 𝐴 , 𝑅 ) ∧ 𝑓𝐶 ∧ dom 𝑓 = ( { 𝑦 } ∪ trCl ( 𝑦 , 𝐴 , 𝑅 ) ) ) )
23 biid ( ( ( ( ( ( 𝜒𝑧𝐸 ) ∧ 𝑧 ∈ trCl ( 𝑥 , 𝐴 , 𝑅 ) ) ∧ 𝑓𝐻𝑧 ∈ dom 𝑓 ) ∧ 𝑦 ∈ pred ( 𝑥 , 𝐴 , 𝑅 ) ∧ 𝑓𝐶 ∧ dom 𝑓 = ( { 𝑦 } ∪ trCl ( 𝑦 , 𝐴 , 𝑅 ) ) ) ∧ 𝑑𝐵𝑓 Fn 𝑑 ∧ ∀ 𝑥𝑑 ( 𝑓𝑥 ) = ( 𝐺𝑌 ) ) ↔ ( ( ( ( ( 𝜒𝑧𝐸 ) ∧ 𝑧 ∈ trCl ( 𝑥 , 𝐴 , 𝑅 ) ) ∧ 𝑓𝐻𝑧 ∈ dom 𝑓 ) ∧ 𝑦 ∈ pred ( 𝑥 , 𝐴 , 𝑅 ) ∧ 𝑓𝐶 ∧ dom 𝑓 = ( { 𝑦 } ∪ trCl ( 𝑦 , 𝐴 , 𝑅 ) ) ) ∧ 𝑑𝐵𝑓 Fn 𝑑 ∧ ∀ 𝑥𝑑 ( 𝑓𝑥 ) = ( 𝐺𝑌 ) ) )
24 eqid 𝑧 , ( 𝑓 ↾ pred ( 𝑧 , 𝐴 , 𝑅 ) ) ⟩ = ⟨ 𝑧 , ( 𝑓 ↾ pred ( 𝑧 , 𝐴 , 𝑅 ) ) ⟩
25 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 20 21 22 23 24 bnj1450 ( ( ( 𝜒𝑧𝐸 ) ∧ 𝑧 ∈ trCl ( 𝑥 , 𝐴 , 𝑅 ) ) → ( 𝑄𝑧 ) = ( 𝐺𝑊 ) )
26 14 bnj1424 ( 𝑧𝐸 → ( 𝑧 ∈ { 𝑥 } ∨ 𝑧 ∈ trCl ( 𝑥 , 𝐴 , 𝑅 ) ) )
27 26 adantl ( ( 𝜒𝑧𝐸 ) → ( 𝑧 ∈ { 𝑥 } ∨ 𝑧 ∈ trCl ( 𝑥 , 𝐴 , 𝑅 ) ) )
28 19 25 27 mpjaodan ( ( 𝜒𝑧𝐸 ) → ( 𝑄𝑧 ) = ( 𝐺𝑊 ) )
29 28 ralrimiva ( 𝜒 → ∀ 𝑧𝐸 ( 𝑄𝑧 ) = ( 𝐺𝑊 ) )