Step |
Hyp |
Ref |
Expression |
1 |
|
bnj1423.1 |
⊢ 𝐵 = { 𝑑 ∣ ( 𝑑 ⊆ 𝐴 ∧ ∀ 𝑥 ∈ 𝑑 pred ( 𝑥 , 𝐴 , 𝑅 ) ⊆ 𝑑 ) } |
2 |
|
bnj1423.2 |
⊢ 𝑌 = 〈 𝑥 , ( 𝑓 ↾ pred ( 𝑥 , 𝐴 , 𝑅 ) ) 〉 |
3 |
|
bnj1423.3 |
⊢ 𝐶 = { 𝑓 ∣ ∃ 𝑑 ∈ 𝐵 ( 𝑓 Fn 𝑑 ∧ ∀ 𝑥 ∈ 𝑑 ( 𝑓 ‘ 𝑥 ) = ( 𝐺 ‘ 𝑌 ) ) } |
4 |
|
bnj1423.4 |
⊢ ( 𝜏 ↔ ( 𝑓 ∈ 𝐶 ∧ dom 𝑓 = ( { 𝑥 } ∪ trCl ( 𝑥 , 𝐴 , 𝑅 ) ) ) ) |
5 |
|
bnj1423.5 |
⊢ 𝐷 = { 𝑥 ∈ 𝐴 ∣ ¬ ∃ 𝑓 𝜏 } |
6 |
|
bnj1423.6 |
⊢ ( 𝜓 ↔ ( 𝑅 FrSe 𝐴 ∧ 𝐷 ≠ ∅ ) ) |
7 |
|
bnj1423.7 |
⊢ ( 𝜒 ↔ ( 𝜓 ∧ 𝑥 ∈ 𝐷 ∧ ∀ 𝑦 ∈ 𝐷 ¬ 𝑦 𝑅 𝑥 ) ) |
8 |
|
bnj1423.8 |
⊢ ( 𝜏′ ↔ [ 𝑦 / 𝑥 ] 𝜏 ) |
9 |
|
bnj1423.9 |
⊢ 𝐻 = { 𝑓 ∣ ∃ 𝑦 ∈ pred ( 𝑥 , 𝐴 , 𝑅 ) 𝜏′ } |
10 |
|
bnj1423.10 |
⊢ 𝑃 = ∪ 𝐻 |
11 |
|
bnj1423.11 |
⊢ 𝑍 = 〈 𝑥 , ( 𝑃 ↾ pred ( 𝑥 , 𝐴 , 𝑅 ) ) 〉 |
12 |
|
bnj1423.12 |
⊢ 𝑄 = ( 𝑃 ∪ { 〈 𝑥 , ( 𝐺 ‘ 𝑍 ) 〉 } ) |
13 |
|
bnj1423.13 |
⊢ 𝑊 = 〈 𝑧 , ( 𝑄 ↾ pred ( 𝑧 , 𝐴 , 𝑅 ) ) 〉 |
14 |
|
bnj1423.14 |
⊢ 𝐸 = ( { 𝑥 } ∪ trCl ( 𝑥 , 𝐴 , 𝑅 ) ) |
15 |
|
bnj1423.15 |
⊢ ( 𝜒 → 𝑃 Fn trCl ( 𝑥 , 𝐴 , 𝑅 ) ) |
16 |
|
bnj1423.16 |
⊢ ( 𝜒 → 𝑄 Fn ( { 𝑥 } ∪ trCl ( 𝑥 , 𝐴 , 𝑅 ) ) ) |
17 |
|
biid |
⊢ ( ( 𝜒 ∧ 𝑧 ∈ 𝐸 ) ↔ ( 𝜒 ∧ 𝑧 ∈ 𝐸 ) ) |
18 |
|
biid |
⊢ ( ( ( 𝜒 ∧ 𝑧 ∈ 𝐸 ) ∧ 𝑧 ∈ { 𝑥 } ) ↔ ( ( 𝜒 ∧ 𝑧 ∈ 𝐸 ) ∧ 𝑧 ∈ { 𝑥 } ) ) |
19 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
|
bnj1442 |
⊢ ( ( ( 𝜒 ∧ 𝑧 ∈ 𝐸 ) ∧ 𝑧 ∈ { 𝑥 } ) → ( 𝑄 ‘ 𝑧 ) = ( 𝐺 ‘ 𝑊 ) ) |
20 |
|
biid |
⊢ ( ( ( 𝜒 ∧ 𝑧 ∈ 𝐸 ) ∧ 𝑧 ∈ trCl ( 𝑥 , 𝐴 , 𝑅 ) ) ↔ ( ( 𝜒 ∧ 𝑧 ∈ 𝐸 ) ∧ 𝑧 ∈ trCl ( 𝑥 , 𝐴 , 𝑅 ) ) ) |
21 |
|
biid |
⊢ ( ( ( ( 𝜒 ∧ 𝑧 ∈ 𝐸 ) ∧ 𝑧 ∈ trCl ( 𝑥 , 𝐴 , 𝑅 ) ) ∧ 𝑓 ∈ 𝐻 ∧ 𝑧 ∈ dom 𝑓 ) ↔ ( ( ( 𝜒 ∧ 𝑧 ∈ 𝐸 ) ∧ 𝑧 ∈ trCl ( 𝑥 , 𝐴 , 𝑅 ) ) ∧ 𝑓 ∈ 𝐻 ∧ 𝑧 ∈ dom 𝑓 ) ) |
22 |
|
biid |
⊢ ( ( ( ( ( 𝜒 ∧ 𝑧 ∈ 𝐸 ) ∧ 𝑧 ∈ trCl ( 𝑥 , 𝐴 , 𝑅 ) ) ∧ 𝑓 ∈ 𝐻 ∧ 𝑧 ∈ dom 𝑓 ) ∧ 𝑦 ∈ pred ( 𝑥 , 𝐴 , 𝑅 ) ∧ 𝑓 ∈ 𝐶 ∧ dom 𝑓 = ( { 𝑦 } ∪ trCl ( 𝑦 , 𝐴 , 𝑅 ) ) ) ↔ ( ( ( ( 𝜒 ∧ 𝑧 ∈ 𝐸 ) ∧ 𝑧 ∈ trCl ( 𝑥 , 𝐴 , 𝑅 ) ) ∧ 𝑓 ∈ 𝐻 ∧ 𝑧 ∈ dom 𝑓 ) ∧ 𝑦 ∈ pred ( 𝑥 , 𝐴 , 𝑅 ) ∧ 𝑓 ∈ 𝐶 ∧ dom 𝑓 = ( { 𝑦 } ∪ trCl ( 𝑦 , 𝐴 , 𝑅 ) ) ) ) |
23 |
|
biid |
⊢ ( ( ( ( ( ( 𝜒 ∧ 𝑧 ∈ 𝐸 ) ∧ 𝑧 ∈ trCl ( 𝑥 , 𝐴 , 𝑅 ) ) ∧ 𝑓 ∈ 𝐻 ∧ 𝑧 ∈ dom 𝑓 ) ∧ 𝑦 ∈ pred ( 𝑥 , 𝐴 , 𝑅 ) ∧ 𝑓 ∈ 𝐶 ∧ dom 𝑓 = ( { 𝑦 } ∪ trCl ( 𝑦 , 𝐴 , 𝑅 ) ) ) ∧ 𝑑 ∈ 𝐵 ∧ 𝑓 Fn 𝑑 ∧ ∀ 𝑥 ∈ 𝑑 ( 𝑓 ‘ 𝑥 ) = ( 𝐺 ‘ 𝑌 ) ) ↔ ( ( ( ( ( 𝜒 ∧ 𝑧 ∈ 𝐸 ) ∧ 𝑧 ∈ trCl ( 𝑥 , 𝐴 , 𝑅 ) ) ∧ 𝑓 ∈ 𝐻 ∧ 𝑧 ∈ dom 𝑓 ) ∧ 𝑦 ∈ pred ( 𝑥 , 𝐴 , 𝑅 ) ∧ 𝑓 ∈ 𝐶 ∧ dom 𝑓 = ( { 𝑦 } ∪ trCl ( 𝑦 , 𝐴 , 𝑅 ) ) ) ∧ 𝑑 ∈ 𝐵 ∧ 𝑓 Fn 𝑑 ∧ ∀ 𝑥 ∈ 𝑑 ( 𝑓 ‘ 𝑥 ) = ( 𝐺 ‘ 𝑌 ) ) ) |
24 |
|
eqid |
⊢ 〈 𝑧 , ( 𝑓 ↾ pred ( 𝑧 , 𝐴 , 𝑅 ) ) 〉 = 〈 𝑧 , ( 𝑓 ↾ pred ( 𝑧 , 𝐴 , 𝑅 ) ) 〉 |
25 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 20 21 22 23 24
|
bnj1450 |
⊢ ( ( ( 𝜒 ∧ 𝑧 ∈ 𝐸 ) ∧ 𝑧 ∈ trCl ( 𝑥 , 𝐴 , 𝑅 ) ) → ( 𝑄 ‘ 𝑧 ) = ( 𝐺 ‘ 𝑊 ) ) |
26 |
14
|
bnj1424 |
⊢ ( 𝑧 ∈ 𝐸 → ( 𝑧 ∈ { 𝑥 } ∨ 𝑧 ∈ trCl ( 𝑥 , 𝐴 , 𝑅 ) ) ) |
27 |
26
|
adantl |
⊢ ( ( 𝜒 ∧ 𝑧 ∈ 𝐸 ) → ( 𝑧 ∈ { 𝑥 } ∨ 𝑧 ∈ trCl ( 𝑥 , 𝐴 , 𝑅 ) ) ) |
28 |
19 25 27
|
mpjaodan |
⊢ ( ( 𝜒 ∧ 𝑧 ∈ 𝐸 ) → ( 𝑄 ‘ 𝑧 ) = ( 𝐺 ‘ 𝑊 ) ) |
29 |
28
|
ralrimiva |
⊢ ( 𝜒 → ∀ 𝑧 ∈ 𝐸 ( 𝑄 ‘ 𝑧 ) = ( 𝐺 ‘ 𝑊 ) ) |