Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Hypothesis | bnj1436.1 | ⊢ 𝐴 = { 𝑥 ∣ 𝜑 } | |
Assertion | bnj1436 | ⊢ ( 𝑥 ∈ 𝐴 → 𝜑 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bnj1436.1 | ⊢ 𝐴 = { 𝑥 ∣ 𝜑 } | |
2 | 1 | abeq2i | ⊢ ( 𝑥 ∈ 𝐴 ↔ 𝜑 ) |
3 | 2 | biimpi | ⊢ ( 𝑥 ∈ 𝐴 → 𝜑 ) |