Metamath Proof Explorer


Theorem bnj1441

Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011) Add disjoint variable condition to avoid ax-13 . See bnj1441g for a less restrictive version requiring more axioms. (Revised by Gino Giotto, 20-Jan-2024) (New usage is discouraged.)

Ref Expression
Hypotheses bnj1441.1 ( 𝑥𝐴 → ∀ 𝑦 𝑥𝐴 )
bnj1441.2 ( 𝜑 → ∀ 𝑦 𝜑 )
Assertion bnj1441 ( 𝑧 ∈ { 𝑥𝐴𝜑 } → ∀ 𝑦 𝑧 ∈ { 𝑥𝐴𝜑 } )

Proof

Step Hyp Ref Expression
1 bnj1441.1 ( 𝑥𝐴 → ∀ 𝑦 𝑥𝐴 )
2 bnj1441.2 ( 𝜑 → ∀ 𝑦 𝜑 )
3 df-rab { 𝑥𝐴𝜑 } = { 𝑥 ∣ ( 𝑥𝐴𝜑 ) }
4 1 2 hban ( ( 𝑥𝐴𝜑 ) → ∀ 𝑦 ( 𝑥𝐴𝜑 ) )
5 4 hbab ( 𝑧 ∈ { 𝑥 ∣ ( 𝑥𝐴𝜑 ) } → ∀ 𝑦 𝑧 ∈ { 𝑥 ∣ ( 𝑥𝐴𝜑 ) } )
6 3 5 hbxfreq ( 𝑧 ∈ { 𝑥𝐴𝜑 } → ∀ 𝑦 𝑧 ∈ { 𝑥𝐴𝜑 } )