Metamath Proof Explorer


Theorem bnj1441g

Description: First-order logic and set theory. See bnj1441 for a version with more disjoint variable conditions, but not requiring ax-13 . (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (New usage is discouraged.)

Ref Expression
Hypotheses bnj1441g.1 ( 𝑥𝐴 → ∀ 𝑦 𝑥𝐴 )
bnj1441g.2 ( 𝜑 → ∀ 𝑦 𝜑 )
Assertion bnj1441g ( 𝑧 ∈ { 𝑥𝐴𝜑 } → ∀ 𝑦 𝑧 ∈ { 𝑥𝐴𝜑 } )

Proof

Step Hyp Ref Expression
1 bnj1441g.1 ( 𝑥𝐴 → ∀ 𝑦 𝑥𝐴 )
2 bnj1441g.2 ( 𝜑 → ∀ 𝑦 𝜑 )
3 df-rab { 𝑥𝐴𝜑 } = { 𝑥 ∣ ( 𝑥𝐴𝜑 ) }
4 1 2 hban ( ( 𝑥𝐴𝜑 ) → ∀ 𝑦 ( 𝑥𝐴𝜑 ) )
5 4 hbabg ( 𝑧 ∈ { 𝑥 ∣ ( 𝑥𝐴𝜑 ) } → ∀ 𝑦 𝑧 ∈ { 𝑥 ∣ ( 𝑥𝐴𝜑 ) } )
6 3 5 hbxfreq ( 𝑧 ∈ { 𝑥𝐴𝜑 } → ∀ 𝑦 𝑧 ∈ { 𝑥𝐴𝜑 } )