Step |
Hyp |
Ref |
Expression |
1 |
|
bnj1442.1 |
⊢ 𝐵 = { 𝑑 ∣ ( 𝑑 ⊆ 𝐴 ∧ ∀ 𝑥 ∈ 𝑑 pred ( 𝑥 , 𝐴 , 𝑅 ) ⊆ 𝑑 ) } |
2 |
|
bnj1442.2 |
⊢ 𝑌 = 〈 𝑥 , ( 𝑓 ↾ pred ( 𝑥 , 𝐴 , 𝑅 ) ) 〉 |
3 |
|
bnj1442.3 |
⊢ 𝐶 = { 𝑓 ∣ ∃ 𝑑 ∈ 𝐵 ( 𝑓 Fn 𝑑 ∧ ∀ 𝑥 ∈ 𝑑 ( 𝑓 ‘ 𝑥 ) = ( 𝐺 ‘ 𝑌 ) ) } |
4 |
|
bnj1442.4 |
⊢ ( 𝜏 ↔ ( 𝑓 ∈ 𝐶 ∧ dom 𝑓 = ( { 𝑥 } ∪ trCl ( 𝑥 , 𝐴 , 𝑅 ) ) ) ) |
5 |
|
bnj1442.5 |
⊢ 𝐷 = { 𝑥 ∈ 𝐴 ∣ ¬ ∃ 𝑓 𝜏 } |
6 |
|
bnj1442.6 |
⊢ ( 𝜓 ↔ ( 𝑅 FrSe 𝐴 ∧ 𝐷 ≠ ∅ ) ) |
7 |
|
bnj1442.7 |
⊢ ( 𝜒 ↔ ( 𝜓 ∧ 𝑥 ∈ 𝐷 ∧ ∀ 𝑦 ∈ 𝐷 ¬ 𝑦 𝑅 𝑥 ) ) |
8 |
|
bnj1442.8 |
⊢ ( 𝜏′ ↔ [ 𝑦 / 𝑥 ] 𝜏 ) |
9 |
|
bnj1442.9 |
⊢ 𝐻 = { 𝑓 ∣ ∃ 𝑦 ∈ pred ( 𝑥 , 𝐴 , 𝑅 ) 𝜏′ } |
10 |
|
bnj1442.10 |
⊢ 𝑃 = ∪ 𝐻 |
11 |
|
bnj1442.11 |
⊢ 𝑍 = 〈 𝑥 , ( 𝑃 ↾ pred ( 𝑥 , 𝐴 , 𝑅 ) ) 〉 |
12 |
|
bnj1442.12 |
⊢ 𝑄 = ( 𝑃 ∪ { 〈 𝑥 , ( 𝐺 ‘ 𝑍 ) 〉 } ) |
13 |
|
bnj1442.13 |
⊢ 𝑊 = 〈 𝑧 , ( 𝑄 ↾ pred ( 𝑧 , 𝐴 , 𝑅 ) ) 〉 |
14 |
|
bnj1442.14 |
⊢ 𝐸 = ( { 𝑥 } ∪ trCl ( 𝑥 , 𝐴 , 𝑅 ) ) |
15 |
|
bnj1442.15 |
⊢ ( 𝜒 → 𝑃 Fn trCl ( 𝑥 , 𝐴 , 𝑅 ) ) |
16 |
|
bnj1442.16 |
⊢ ( 𝜒 → 𝑄 Fn ( { 𝑥 } ∪ trCl ( 𝑥 , 𝐴 , 𝑅 ) ) ) |
17 |
|
bnj1442.17 |
⊢ ( 𝜃 ↔ ( 𝜒 ∧ 𝑧 ∈ 𝐸 ) ) |
18 |
|
bnj1442.18 |
⊢ ( 𝜂 ↔ ( 𝜃 ∧ 𝑧 ∈ { 𝑥 } ) ) |
19 |
16
|
fnfund |
⊢ ( 𝜒 → Fun 𝑄 ) |
20 |
|
opex |
⊢ 〈 𝑥 , ( 𝐺 ‘ 𝑍 ) 〉 ∈ V |
21 |
20
|
snid |
⊢ 〈 𝑥 , ( 𝐺 ‘ 𝑍 ) 〉 ∈ { 〈 𝑥 , ( 𝐺 ‘ 𝑍 ) 〉 } |
22 |
|
elun2 |
⊢ ( 〈 𝑥 , ( 𝐺 ‘ 𝑍 ) 〉 ∈ { 〈 𝑥 , ( 𝐺 ‘ 𝑍 ) 〉 } → 〈 𝑥 , ( 𝐺 ‘ 𝑍 ) 〉 ∈ ( 𝑃 ∪ { 〈 𝑥 , ( 𝐺 ‘ 𝑍 ) 〉 } ) ) |
23 |
21 22
|
ax-mp |
⊢ 〈 𝑥 , ( 𝐺 ‘ 𝑍 ) 〉 ∈ ( 𝑃 ∪ { 〈 𝑥 , ( 𝐺 ‘ 𝑍 ) 〉 } ) |
24 |
23 12
|
eleqtrri |
⊢ 〈 𝑥 , ( 𝐺 ‘ 𝑍 ) 〉 ∈ 𝑄 |
25 |
|
funopfv |
⊢ ( Fun 𝑄 → ( 〈 𝑥 , ( 𝐺 ‘ 𝑍 ) 〉 ∈ 𝑄 → ( 𝑄 ‘ 𝑥 ) = ( 𝐺 ‘ 𝑍 ) ) ) |
26 |
19 24 25
|
mpisyl |
⊢ ( 𝜒 → ( 𝑄 ‘ 𝑥 ) = ( 𝐺 ‘ 𝑍 ) ) |
27 |
17 26
|
bnj832 |
⊢ ( 𝜃 → ( 𝑄 ‘ 𝑥 ) = ( 𝐺 ‘ 𝑍 ) ) |
28 |
18 27
|
bnj832 |
⊢ ( 𝜂 → ( 𝑄 ‘ 𝑥 ) = ( 𝐺 ‘ 𝑍 ) ) |
29 |
|
elsni |
⊢ ( 𝑧 ∈ { 𝑥 } → 𝑧 = 𝑥 ) |
30 |
18 29
|
simplbiim |
⊢ ( 𝜂 → 𝑧 = 𝑥 ) |
31 |
30
|
fveq2d |
⊢ ( 𝜂 → ( 𝑄 ‘ 𝑧 ) = ( 𝑄 ‘ 𝑥 ) ) |
32 |
|
bnj602 |
⊢ ( 𝑧 = 𝑥 → pred ( 𝑧 , 𝐴 , 𝑅 ) = pred ( 𝑥 , 𝐴 , 𝑅 ) ) |
33 |
32
|
reseq2d |
⊢ ( 𝑧 = 𝑥 → ( 𝑄 ↾ pred ( 𝑧 , 𝐴 , 𝑅 ) ) = ( 𝑄 ↾ pred ( 𝑥 , 𝐴 , 𝑅 ) ) ) |
34 |
30 33
|
syl |
⊢ ( 𝜂 → ( 𝑄 ↾ pred ( 𝑧 , 𝐴 , 𝑅 ) ) = ( 𝑄 ↾ pred ( 𝑥 , 𝐴 , 𝑅 ) ) ) |
35 |
12
|
bnj931 |
⊢ 𝑃 ⊆ 𝑄 |
36 |
35
|
a1i |
⊢ ( 𝜒 → 𝑃 ⊆ 𝑄 ) |
37 |
6
|
simplbi |
⊢ ( 𝜓 → 𝑅 FrSe 𝐴 ) |
38 |
7 37
|
bnj835 |
⊢ ( 𝜒 → 𝑅 FrSe 𝐴 ) |
39 |
5 7
|
bnj1212 |
⊢ ( 𝜒 → 𝑥 ∈ 𝐴 ) |
40 |
|
bnj906 |
⊢ ( ( 𝑅 FrSe 𝐴 ∧ 𝑥 ∈ 𝐴 ) → pred ( 𝑥 , 𝐴 , 𝑅 ) ⊆ trCl ( 𝑥 , 𝐴 , 𝑅 ) ) |
41 |
38 39 40
|
syl2anc |
⊢ ( 𝜒 → pred ( 𝑥 , 𝐴 , 𝑅 ) ⊆ trCl ( 𝑥 , 𝐴 , 𝑅 ) ) |
42 |
15
|
fndmd |
⊢ ( 𝜒 → dom 𝑃 = trCl ( 𝑥 , 𝐴 , 𝑅 ) ) |
43 |
41 42
|
sseqtrrd |
⊢ ( 𝜒 → pred ( 𝑥 , 𝐴 , 𝑅 ) ⊆ dom 𝑃 ) |
44 |
19 36 43
|
bnj1503 |
⊢ ( 𝜒 → ( 𝑄 ↾ pred ( 𝑥 , 𝐴 , 𝑅 ) ) = ( 𝑃 ↾ pred ( 𝑥 , 𝐴 , 𝑅 ) ) ) |
45 |
17 44
|
bnj832 |
⊢ ( 𝜃 → ( 𝑄 ↾ pred ( 𝑥 , 𝐴 , 𝑅 ) ) = ( 𝑃 ↾ pred ( 𝑥 , 𝐴 , 𝑅 ) ) ) |
46 |
18 45
|
bnj832 |
⊢ ( 𝜂 → ( 𝑄 ↾ pred ( 𝑥 , 𝐴 , 𝑅 ) ) = ( 𝑃 ↾ pred ( 𝑥 , 𝐴 , 𝑅 ) ) ) |
47 |
34 46
|
eqtrd |
⊢ ( 𝜂 → ( 𝑄 ↾ pred ( 𝑧 , 𝐴 , 𝑅 ) ) = ( 𝑃 ↾ pred ( 𝑥 , 𝐴 , 𝑅 ) ) ) |
48 |
30 47
|
opeq12d |
⊢ ( 𝜂 → 〈 𝑧 , ( 𝑄 ↾ pred ( 𝑧 , 𝐴 , 𝑅 ) ) 〉 = 〈 𝑥 , ( 𝑃 ↾ pred ( 𝑥 , 𝐴 , 𝑅 ) ) 〉 ) |
49 |
48 13 11
|
3eqtr4g |
⊢ ( 𝜂 → 𝑊 = 𝑍 ) |
50 |
49
|
fveq2d |
⊢ ( 𝜂 → ( 𝐺 ‘ 𝑊 ) = ( 𝐺 ‘ 𝑍 ) ) |
51 |
28 31 50
|
3eqtr4d |
⊢ ( 𝜂 → ( 𝑄 ‘ 𝑧 ) = ( 𝐺 ‘ 𝑊 ) ) |