Metamath Proof Explorer


Theorem bnj1442

Description: Technical lemma for bnj60 . This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (New usage is discouraged.)

Ref Expression
Hypotheses bnj1442.1 𝐵 = { 𝑑 ∣ ( 𝑑𝐴 ∧ ∀ 𝑥𝑑 pred ( 𝑥 , 𝐴 , 𝑅 ) ⊆ 𝑑 ) }
bnj1442.2 𝑌 = ⟨ 𝑥 , ( 𝑓 ↾ pred ( 𝑥 , 𝐴 , 𝑅 ) ) ⟩
bnj1442.3 𝐶 = { 𝑓 ∣ ∃ 𝑑𝐵 ( 𝑓 Fn 𝑑 ∧ ∀ 𝑥𝑑 ( 𝑓𝑥 ) = ( 𝐺𝑌 ) ) }
bnj1442.4 ( 𝜏 ↔ ( 𝑓𝐶 ∧ dom 𝑓 = ( { 𝑥 } ∪ trCl ( 𝑥 , 𝐴 , 𝑅 ) ) ) )
bnj1442.5 𝐷 = { 𝑥𝐴 ∣ ¬ ∃ 𝑓 𝜏 }
bnj1442.6 ( 𝜓 ↔ ( 𝑅 FrSe 𝐴𝐷 ≠ ∅ ) )
bnj1442.7 ( 𝜒 ↔ ( 𝜓𝑥𝐷 ∧ ∀ 𝑦𝐷 ¬ 𝑦 𝑅 𝑥 ) )
bnj1442.8 ( 𝜏′[ 𝑦 / 𝑥 ] 𝜏 )
bnj1442.9 𝐻 = { 𝑓 ∣ ∃ 𝑦 ∈ pred ( 𝑥 , 𝐴 , 𝑅 ) 𝜏′ }
bnj1442.10 𝑃 = 𝐻
bnj1442.11 𝑍 = ⟨ 𝑥 , ( 𝑃 ↾ pred ( 𝑥 , 𝐴 , 𝑅 ) ) ⟩
bnj1442.12 𝑄 = ( 𝑃 ∪ { ⟨ 𝑥 , ( 𝐺𝑍 ) ⟩ } )
bnj1442.13 𝑊 = ⟨ 𝑧 , ( 𝑄 ↾ pred ( 𝑧 , 𝐴 , 𝑅 ) ) ⟩
bnj1442.14 𝐸 = ( { 𝑥 } ∪ trCl ( 𝑥 , 𝐴 , 𝑅 ) )
bnj1442.15 ( 𝜒𝑃 Fn trCl ( 𝑥 , 𝐴 , 𝑅 ) )
bnj1442.16 ( 𝜒𝑄 Fn ( { 𝑥 } ∪ trCl ( 𝑥 , 𝐴 , 𝑅 ) ) )
bnj1442.17 ( 𝜃 ↔ ( 𝜒𝑧𝐸 ) )
bnj1442.18 ( 𝜂 ↔ ( 𝜃𝑧 ∈ { 𝑥 } ) )
Assertion bnj1442 ( 𝜂 → ( 𝑄𝑧 ) = ( 𝐺𝑊 ) )

Proof

Step Hyp Ref Expression
1 bnj1442.1 𝐵 = { 𝑑 ∣ ( 𝑑𝐴 ∧ ∀ 𝑥𝑑 pred ( 𝑥 , 𝐴 , 𝑅 ) ⊆ 𝑑 ) }
2 bnj1442.2 𝑌 = ⟨ 𝑥 , ( 𝑓 ↾ pred ( 𝑥 , 𝐴 , 𝑅 ) ) ⟩
3 bnj1442.3 𝐶 = { 𝑓 ∣ ∃ 𝑑𝐵 ( 𝑓 Fn 𝑑 ∧ ∀ 𝑥𝑑 ( 𝑓𝑥 ) = ( 𝐺𝑌 ) ) }
4 bnj1442.4 ( 𝜏 ↔ ( 𝑓𝐶 ∧ dom 𝑓 = ( { 𝑥 } ∪ trCl ( 𝑥 , 𝐴 , 𝑅 ) ) ) )
5 bnj1442.5 𝐷 = { 𝑥𝐴 ∣ ¬ ∃ 𝑓 𝜏 }
6 bnj1442.6 ( 𝜓 ↔ ( 𝑅 FrSe 𝐴𝐷 ≠ ∅ ) )
7 bnj1442.7 ( 𝜒 ↔ ( 𝜓𝑥𝐷 ∧ ∀ 𝑦𝐷 ¬ 𝑦 𝑅 𝑥 ) )
8 bnj1442.8 ( 𝜏′[ 𝑦 / 𝑥 ] 𝜏 )
9 bnj1442.9 𝐻 = { 𝑓 ∣ ∃ 𝑦 ∈ pred ( 𝑥 , 𝐴 , 𝑅 ) 𝜏′ }
10 bnj1442.10 𝑃 = 𝐻
11 bnj1442.11 𝑍 = ⟨ 𝑥 , ( 𝑃 ↾ pred ( 𝑥 , 𝐴 , 𝑅 ) ) ⟩
12 bnj1442.12 𝑄 = ( 𝑃 ∪ { ⟨ 𝑥 , ( 𝐺𝑍 ) ⟩ } )
13 bnj1442.13 𝑊 = ⟨ 𝑧 , ( 𝑄 ↾ pred ( 𝑧 , 𝐴 , 𝑅 ) ) ⟩
14 bnj1442.14 𝐸 = ( { 𝑥 } ∪ trCl ( 𝑥 , 𝐴 , 𝑅 ) )
15 bnj1442.15 ( 𝜒𝑃 Fn trCl ( 𝑥 , 𝐴 , 𝑅 ) )
16 bnj1442.16 ( 𝜒𝑄 Fn ( { 𝑥 } ∪ trCl ( 𝑥 , 𝐴 , 𝑅 ) ) )
17 bnj1442.17 ( 𝜃 ↔ ( 𝜒𝑧𝐸 ) )
18 bnj1442.18 ( 𝜂 ↔ ( 𝜃𝑧 ∈ { 𝑥 } ) )
19 16 fnfund ( 𝜒 → Fun 𝑄 )
20 opex 𝑥 , ( 𝐺𝑍 ) ⟩ ∈ V
21 20 snid 𝑥 , ( 𝐺𝑍 ) ⟩ ∈ { ⟨ 𝑥 , ( 𝐺𝑍 ) ⟩ }
22 elun2 ( ⟨ 𝑥 , ( 𝐺𝑍 ) ⟩ ∈ { ⟨ 𝑥 , ( 𝐺𝑍 ) ⟩ } → ⟨ 𝑥 , ( 𝐺𝑍 ) ⟩ ∈ ( 𝑃 ∪ { ⟨ 𝑥 , ( 𝐺𝑍 ) ⟩ } ) )
23 21 22 ax-mp 𝑥 , ( 𝐺𝑍 ) ⟩ ∈ ( 𝑃 ∪ { ⟨ 𝑥 , ( 𝐺𝑍 ) ⟩ } )
24 23 12 eleqtrri 𝑥 , ( 𝐺𝑍 ) ⟩ ∈ 𝑄
25 funopfv ( Fun 𝑄 → ( ⟨ 𝑥 , ( 𝐺𝑍 ) ⟩ ∈ 𝑄 → ( 𝑄𝑥 ) = ( 𝐺𝑍 ) ) )
26 19 24 25 mpisyl ( 𝜒 → ( 𝑄𝑥 ) = ( 𝐺𝑍 ) )
27 17 26 bnj832 ( 𝜃 → ( 𝑄𝑥 ) = ( 𝐺𝑍 ) )
28 18 27 bnj832 ( 𝜂 → ( 𝑄𝑥 ) = ( 𝐺𝑍 ) )
29 elsni ( 𝑧 ∈ { 𝑥 } → 𝑧 = 𝑥 )
30 18 29 simplbiim ( 𝜂𝑧 = 𝑥 )
31 30 fveq2d ( 𝜂 → ( 𝑄𝑧 ) = ( 𝑄𝑥 ) )
32 bnj602 ( 𝑧 = 𝑥 → pred ( 𝑧 , 𝐴 , 𝑅 ) = pred ( 𝑥 , 𝐴 , 𝑅 ) )
33 32 reseq2d ( 𝑧 = 𝑥 → ( 𝑄 ↾ pred ( 𝑧 , 𝐴 , 𝑅 ) ) = ( 𝑄 ↾ pred ( 𝑥 , 𝐴 , 𝑅 ) ) )
34 30 33 syl ( 𝜂 → ( 𝑄 ↾ pred ( 𝑧 , 𝐴 , 𝑅 ) ) = ( 𝑄 ↾ pred ( 𝑥 , 𝐴 , 𝑅 ) ) )
35 12 bnj931 𝑃𝑄
36 35 a1i ( 𝜒𝑃𝑄 )
37 6 simplbi ( 𝜓𝑅 FrSe 𝐴 )
38 7 37 bnj835 ( 𝜒𝑅 FrSe 𝐴 )
39 5 7 bnj1212 ( 𝜒𝑥𝐴 )
40 bnj906 ( ( 𝑅 FrSe 𝐴𝑥𝐴 ) → pred ( 𝑥 , 𝐴 , 𝑅 ) ⊆ trCl ( 𝑥 , 𝐴 , 𝑅 ) )
41 38 39 40 syl2anc ( 𝜒 → pred ( 𝑥 , 𝐴 , 𝑅 ) ⊆ trCl ( 𝑥 , 𝐴 , 𝑅 ) )
42 15 fndmd ( 𝜒 → dom 𝑃 = trCl ( 𝑥 , 𝐴 , 𝑅 ) )
43 41 42 sseqtrrd ( 𝜒 → pred ( 𝑥 , 𝐴 , 𝑅 ) ⊆ dom 𝑃 )
44 19 36 43 bnj1503 ( 𝜒 → ( 𝑄 ↾ pred ( 𝑥 , 𝐴 , 𝑅 ) ) = ( 𝑃 ↾ pred ( 𝑥 , 𝐴 , 𝑅 ) ) )
45 17 44 bnj832 ( 𝜃 → ( 𝑄 ↾ pred ( 𝑥 , 𝐴 , 𝑅 ) ) = ( 𝑃 ↾ pred ( 𝑥 , 𝐴 , 𝑅 ) ) )
46 18 45 bnj832 ( 𝜂 → ( 𝑄 ↾ pred ( 𝑥 , 𝐴 , 𝑅 ) ) = ( 𝑃 ↾ pred ( 𝑥 , 𝐴 , 𝑅 ) ) )
47 34 46 eqtrd ( 𝜂 → ( 𝑄 ↾ pred ( 𝑧 , 𝐴 , 𝑅 ) ) = ( 𝑃 ↾ pred ( 𝑥 , 𝐴 , 𝑅 ) ) )
48 30 47 opeq12d ( 𝜂 → ⟨ 𝑧 , ( 𝑄 ↾ pred ( 𝑧 , 𝐴 , 𝑅 ) ) ⟩ = ⟨ 𝑥 , ( 𝑃 ↾ pred ( 𝑥 , 𝐴 , 𝑅 ) ) ⟩ )
49 48 13 11 3eqtr4g ( 𝜂𝑊 = 𝑍 )
50 49 fveq2d ( 𝜂 → ( 𝐺𝑊 ) = ( 𝐺𝑍 ) )
51 28 31 50 3eqtr4d ( 𝜂 → ( 𝑄𝑧 ) = ( 𝐺𝑊 ) )