Metamath Proof Explorer


Theorem bnj1444

Description: Technical lemma for bnj60 . This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (New usage is discouraged.)

Ref Expression
Hypotheses bnj1444.1 𝐵 = { 𝑑 ∣ ( 𝑑𝐴 ∧ ∀ 𝑥𝑑 pred ( 𝑥 , 𝐴 , 𝑅 ) ⊆ 𝑑 ) }
bnj1444.2 𝑌 = ⟨ 𝑥 , ( 𝑓 ↾ pred ( 𝑥 , 𝐴 , 𝑅 ) ) ⟩
bnj1444.3 𝐶 = { 𝑓 ∣ ∃ 𝑑𝐵 ( 𝑓 Fn 𝑑 ∧ ∀ 𝑥𝑑 ( 𝑓𝑥 ) = ( 𝐺𝑌 ) ) }
bnj1444.4 ( 𝜏 ↔ ( 𝑓𝐶 ∧ dom 𝑓 = ( { 𝑥 } ∪ trCl ( 𝑥 , 𝐴 , 𝑅 ) ) ) )
bnj1444.5 𝐷 = { 𝑥𝐴 ∣ ¬ ∃ 𝑓 𝜏 }
bnj1444.6 ( 𝜓 ↔ ( 𝑅 FrSe 𝐴𝐷 ≠ ∅ ) )
bnj1444.7 ( 𝜒 ↔ ( 𝜓𝑥𝐷 ∧ ∀ 𝑦𝐷 ¬ 𝑦 𝑅 𝑥 ) )
bnj1444.8 ( 𝜏′[ 𝑦 / 𝑥 ] 𝜏 )
bnj1444.9 𝐻 = { 𝑓 ∣ ∃ 𝑦 ∈ pred ( 𝑥 , 𝐴 , 𝑅 ) 𝜏′ }
bnj1444.10 𝑃 = 𝐻
bnj1444.11 𝑍 = ⟨ 𝑥 , ( 𝑃 ↾ pred ( 𝑥 , 𝐴 , 𝑅 ) ) ⟩
bnj1444.12 𝑄 = ( 𝑃 ∪ { ⟨ 𝑥 , ( 𝐺𝑍 ) ⟩ } )
bnj1444.13 𝑊 = ⟨ 𝑧 , ( 𝑄 ↾ pred ( 𝑧 , 𝐴 , 𝑅 ) ) ⟩
bnj1444.14 𝐸 = ( { 𝑥 } ∪ trCl ( 𝑥 , 𝐴 , 𝑅 ) )
bnj1444.15 ( 𝜒𝑃 Fn trCl ( 𝑥 , 𝐴 , 𝑅 ) )
bnj1444.16 ( 𝜒𝑄 Fn ( { 𝑥 } ∪ trCl ( 𝑥 , 𝐴 , 𝑅 ) ) )
bnj1444.17 ( 𝜃 ↔ ( 𝜒𝑧𝐸 ) )
bnj1444.18 ( 𝜂 ↔ ( 𝜃𝑧 ∈ { 𝑥 } ) )
bnj1444.19 ( 𝜁 ↔ ( 𝜃𝑧 ∈ trCl ( 𝑥 , 𝐴 , 𝑅 ) ) )
bnj1444.20 ( 𝜌 ↔ ( 𝜁𝑓𝐻𝑧 ∈ dom 𝑓 ) )
Assertion bnj1444 ( 𝜌 → ∀ 𝑦 𝜌 )

Proof

Step Hyp Ref Expression
1 bnj1444.1 𝐵 = { 𝑑 ∣ ( 𝑑𝐴 ∧ ∀ 𝑥𝑑 pred ( 𝑥 , 𝐴 , 𝑅 ) ⊆ 𝑑 ) }
2 bnj1444.2 𝑌 = ⟨ 𝑥 , ( 𝑓 ↾ pred ( 𝑥 , 𝐴 , 𝑅 ) ) ⟩
3 bnj1444.3 𝐶 = { 𝑓 ∣ ∃ 𝑑𝐵 ( 𝑓 Fn 𝑑 ∧ ∀ 𝑥𝑑 ( 𝑓𝑥 ) = ( 𝐺𝑌 ) ) }
4 bnj1444.4 ( 𝜏 ↔ ( 𝑓𝐶 ∧ dom 𝑓 = ( { 𝑥 } ∪ trCl ( 𝑥 , 𝐴 , 𝑅 ) ) ) )
5 bnj1444.5 𝐷 = { 𝑥𝐴 ∣ ¬ ∃ 𝑓 𝜏 }
6 bnj1444.6 ( 𝜓 ↔ ( 𝑅 FrSe 𝐴𝐷 ≠ ∅ ) )
7 bnj1444.7 ( 𝜒 ↔ ( 𝜓𝑥𝐷 ∧ ∀ 𝑦𝐷 ¬ 𝑦 𝑅 𝑥 ) )
8 bnj1444.8 ( 𝜏′[ 𝑦 / 𝑥 ] 𝜏 )
9 bnj1444.9 𝐻 = { 𝑓 ∣ ∃ 𝑦 ∈ pred ( 𝑥 , 𝐴 , 𝑅 ) 𝜏′ }
10 bnj1444.10 𝑃 = 𝐻
11 bnj1444.11 𝑍 = ⟨ 𝑥 , ( 𝑃 ↾ pred ( 𝑥 , 𝐴 , 𝑅 ) ) ⟩
12 bnj1444.12 𝑄 = ( 𝑃 ∪ { ⟨ 𝑥 , ( 𝐺𝑍 ) ⟩ } )
13 bnj1444.13 𝑊 = ⟨ 𝑧 , ( 𝑄 ↾ pred ( 𝑧 , 𝐴 , 𝑅 ) ) ⟩
14 bnj1444.14 𝐸 = ( { 𝑥 } ∪ trCl ( 𝑥 , 𝐴 , 𝑅 ) )
15 bnj1444.15 ( 𝜒𝑃 Fn trCl ( 𝑥 , 𝐴 , 𝑅 ) )
16 bnj1444.16 ( 𝜒𝑄 Fn ( { 𝑥 } ∪ trCl ( 𝑥 , 𝐴 , 𝑅 ) ) )
17 bnj1444.17 ( 𝜃 ↔ ( 𝜒𝑧𝐸 ) )
18 bnj1444.18 ( 𝜂 ↔ ( 𝜃𝑧 ∈ { 𝑥 } ) )
19 bnj1444.19 ( 𝜁 ↔ ( 𝜃𝑧 ∈ trCl ( 𝑥 , 𝐴 , 𝑅 ) ) )
20 bnj1444.20 ( 𝜌 ↔ ( 𝜁𝑓𝐻𝑧 ∈ dom 𝑓 ) )
21 nfv 𝑦 𝜓
22 nfv 𝑦 𝑥𝐷
23 nfra1 𝑦𝑦𝐷 ¬ 𝑦 𝑅 𝑥
24 21 22 23 nf3an 𝑦 ( 𝜓𝑥𝐷 ∧ ∀ 𝑦𝐷 ¬ 𝑦 𝑅 𝑥 )
25 7 24 nfxfr 𝑦 𝜒
26 nfv 𝑦 𝑧𝐸
27 25 26 nfan 𝑦 ( 𝜒𝑧𝐸 )
28 17 27 nfxfr 𝑦 𝜃
29 nfv 𝑦 𝑧 ∈ trCl ( 𝑥 , 𝐴 , 𝑅 )
30 28 29 nfan 𝑦 ( 𝜃𝑧 ∈ trCl ( 𝑥 , 𝐴 , 𝑅 ) )
31 19 30 nfxfr 𝑦 𝜁
32 nfre1 𝑦𝑦 ∈ pred ( 𝑥 , 𝐴 , 𝑅 ) 𝜏′
33 32 nfab 𝑦 { 𝑓 ∣ ∃ 𝑦 ∈ pred ( 𝑥 , 𝐴 , 𝑅 ) 𝜏′ }
34 9 33 nfcxfr 𝑦 𝐻
35 34 nfcri 𝑦 𝑓𝐻
36 nfv 𝑦 𝑧 ∈ dom 𝑓
37 31 35 36 nf3an 𝑦 ( 𝜁𝑓𝐻𝑧 ∈ dom 𝑓 )
38 20 37 nfxfr 𝑦 𝜌
39 38 nf5ri ( 𝜌 → ∀ 𝑦 𝜌 )