Step |
Hyp |
Ref |
Expression |
1 |
|
bnj1448.1 |
⊢ 𝐵 = { 𝑑 ∣ ( 𝑑 ⊆ 𝐴 ∧ ∀ 𝑥 ∈ 𝑑 pred ( 𝑥 , 𝐴 , 𝑅 ) ⊆ 𝑑 ) } |
2 |
|
bnj1448.2 |
⊢ 𝑌 = 〈 𝑥 , ( 𝑓 ↾ pred ( 𝑥 , 𝐴 , 𝑅 ) ) 〉 |
3 |
|
bnj1448.3 |
⊢ 𝐶 = { 𝑓 ∣ ∃ 𝑑 ∈ 𝐵 ( 𝑓 Fn 𝑑 ∧ ∀ 𝑥 ∈ 𝑑 ( 𝑓 ‘ 𝑥 ) = ( 𝐺 ‘ 𝑌 ) ) } |
4 |
|
bnj1448.4 |
⊢ ( 𝜏 ↔ ( 𝑓 ∈ 𝐶 ∧ dom 𝑓 = ( { 𝑥 } ∪ trCl ( 𝑥 , 𝐴 , 𝑅 ) ) ) ) |
5 |
|
bnj1448.5 |
⊢ 𝐷 = { 𝑥 ∈ 𝐴 ∣ ¬ ∃ 𝑓 𝜏 } |
6 |
|
bnj1448.6 |
⊢ ( 𝜓 ↔ ( 𝑅 FrSe 𝐴 ∧ 𝐷 ≠ ∅ ) ) |
7 |
|
bnj1448.7 |
⊢ ( 𝜒 ↔ ( 𝜓 ∧ 𝑥 ∈ 𝐷 ∧ ∀ 𝑦 ∈ 𝐷 ¬ 𝑦 𝑅 𝑥 ) ) |
8 |
|
bnj1448.8 |
⊢ ( 𝜏′ ↔ [ 𝑦 / 𝑥 ] 𝜏 ) |
9 |
|
bnj1448.9 |
⊢ 𝐻 = { 𝑓 ∣ ∃ 𝑦 ∈ pred ( 𝑥 , 𝐴 , 𝑅 ) 𝜏′ } |
10 |
|
bnj1448.10 |
⊢ 𝑃 = ∪ 𝐻 |
11 |
|
bnj1448.11 |
⊢ 𝑍 = 〈 𝑥 , ( 𝑃 ↾ pred ( 𝑥 , 𝐴 , 𝑅 ) ) 〉 |
12 |
|
bnj1448.12 |
⊢ 𝑄 = ( 𝑃 ∪ { 〈 𝑥 , ( 𝐺 ‘ 𝑍 ) 〉 } ) |
13 |
|
bnj1448.13 |
⊢ 𝑊 = 〈 𝑧 , ( 𝑄 ↾ pred ( 𝑧 , 𝐴 , 𝑅 ) ) 〉 |
14 |
9
|
bnj1317 |
⊢ ( 𝑤 ∈ 𝐻 → ∀ 𝑓 𝑤 ∈ 𝐻 ) |
15 |
14
|
nfcii |
⊢ Ⅎ 𝑓 𝐻 |
16 |
15
|
nfuni |
⊢ Ⅎ 𝑓 ∪ 𝐻 |
17 |
10 16
|
nfcxfr |
⊢ Ⅎ 𝑓 𝑃 |
18 |
|
nfcv |
⊢ Ⅎ 𝑓 𝑥 |
19 |
|
nfcv |
⊢ Ⅎ 𝑓 𝐺 |
20 |
|
nfcv |
⊢ Ⅎ 𝑓 pred ( 𝑥 , 𝐴 , 𝑅 ) |
21 |
17 20
|
nfres |
⊢ Ⅎ 𝑓 ( 𝑃 ↾ pred ( 𝑥 , 𝐴 , 𝑅 ) ) |
22 |
18 21
|
nfop |
⊢ Ⅎ 𝑓 〈 𝑥 , ( 𝑃 ↾ pred ( 𝑥 , 𝐴 , 𝑅 ) ) 〉 |
23 |
11 22
|
nfcxfr |
⊢ Ⅎ 𝑓 𝑍 |
24 |
19 23
|
nffv |
⊢ Ⅎ 𝑓 ( 𝐺 ‘ 𝑍 ) |
25 |
18 24
|
nfop |
⊢ Ⅎ 𝑓 〈 𝑥 , ( 𝐺 ‘ 𝑍 ) 〉 |
26 |
25
|
nfsn |
⊢ Ⅎ 𝑓 { 〈 𝑥 , ( 𝐺 ‘ 𝑍 ) 〉 } |
27 |
17 26
|
nfun |
⊢ Ⅎ 𝑓 ( 𝑃 ∪ { 〈 𝑥 , ( 𝐺 ‘ 𝑍 ) 〉 } ) |
28 |
12 27
|
nfcxfr |
⊢ Ⅎ 𝑓 𝑄 |
29 |
|
nfcv |
⊢ Ⅎ 𝑓 𝑧 |
30 |
28 29
|
nffv |
⊢ Ⅎ 𝑓 ( 𝑄 ‘ 𝑧 ) |
31 |
|
nfcv |
⊢ Ⅎ 𝑓 pred ( 𝑧 , 𝐴 , 𝑅 ) |
32 |
28 31
|
nfres |
⊢ Ⅎ 𝑓 ( 𝑄 ↾ pred ( 𝑧 , 𝐴 , 𝑅 ) ) |
33 |
29 32
|
nfop |
⊢ Ⅎ 𝑓 〈 𝑧 , ( 𝑄 ↾ pred ( 𝑧 , 𝐴 , 𝑅 ) ) 〉 |
34 |
13 33
|
nfcxfr |
⊢ Ⅎ 𝑓 𝑊 |
35 |
19 34
|
nffv |
⊢ Ⅎ 𝑓 ( 𝐺 ‘ 𝑊 ) |
36 |
30 35
|
nfeq |
⊢ Ⅎ 𝑓 ( 𝑄 ‘ 𝑧 ) = ( 𝐺 ‘ 𝑊 ) |
37 |
36
|
nf5ri |
⊢ ( ( 𝑄 ‘ 𝑧 ) = ( 𝐺 ‘ 𝑊 ) → ∀ 𝑓 ( 𝑄 ‘ 𝑧 ) = ( 𝐺 ‘ 𝑊 ) ) |