Metamath Proof Explorer


Theorem bnj1448

Description: Technical lemma for bnj60 . This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (New usage is discouraged.)

Ref Expression
Hypotheses bnj1448.1 𝐵 = { 𝑑 ∣ ( 𝑑𝐴 ∧ ∀ 𝑥𝑑 pred ( 𝑥 , 𝐴 , 𝑅 ) ⊆ 𝑑 ) }
bnj1448.2 𝑌 = ⟨ 𝑥 , ( 𝑓 ↾ pred ( 𝑥 , 𝐴 , 𝑅 ) ) ⟩
bnj1448.3 𝐶 = { 𝑓 ∣ ∃ 𝑑𝐵 ( 𝑓 Fn 𝑑 ∧ ∀ 𝑥𝑑 ( 𝑓𝑥 ) = ( 𝐺𝑌 ) ) }
bnj1448.4 ( 𝜏 ↔ ( 𝑓𝐶 ∧ dom 𝑓 = ( { 𝑥 } ∪ trCl ( 𝑥 , 𝐴 , 𝑅 ) ) ) )
bnj1448.5 𝐷 = { 𝑥𝐴 ∣ ¬ ∃ 𝑓 𝜏 }
bnj1448.6 ( 𝜓 ↔ ( 𝑅 FrSe 𝐴𝐷 ≠ ∅ ) )
bnj1448.7 ( 𝜒 ↔ ( 𝜓𝑥𝐷 ∧ ∀ 𝑦𝐷 ¬ 𝑦 𝑅 𝑥 ) )
bnj1448.8 ( 𝜏′[ 𝑦 / 𝑥 ] 𝜏 )
bnj1448.9 𝐻 = { 𝑓 ∣ ∃ 𝑦 ∈ pred ( 𝑥 , 𝐴 , 𝑅 ) 𝜏′ }
bnj1448.10 𝑃 = 𝐻
bnj1448.11 𝑍 = ⟨ 𝑥 , ( 𝑃 ↾ pred ( 𝑥 , 𝐴 , 𝑅 ) ) ⟩
bnj1448.12 𝑄 = ( 𝑃 ∪ { ⟨ 𝑥 , ( 𝐺𝑍 ) ⟩ } )
bnj1448.13 𝑊 = ⟨ 𝑧 , ( 𝑄 ↾ pred ( 𝑧 , 𝐴 , 𝑅 ) ) ⟩
Assertion bnj1448 ( ( 𝑄𝑧 ) = ( 𝐺𝑊 ) → ∀ 𝑓 ( 𝑄𝑧 ) = ( 𝐺𝑊 ) )

Proof

Step Hyp Ref Expression
1 bnj1448.1 𝐵 = { 𝑑 ∣ ( 𝑑𝐴 ∧ ∀ 𝑥𝑑 pred ( 𝑥 , 𝐴 , 𝑅 ) ⊆ 𝑑 ) }
2 bnj1448.2 𝑌 = ⟨ 𝑥 , ( 𝑓 ↾ pred ( 𝑥 , 𝐴 , 𝑅 ) ) ⟩
3 bnj1448.3 𝐶 = { 𝑓 ∣ ∃ 𝑑𝐵 ( 𝑓 Fn 𝑑 ∧ ∀ 𝑥𝑑 ( 𝑓𝑥 ) = ( 𝐺𝑌 ) ) }
4 bnj1448.4 ( 𝜏 ↔ ( 𝑓𝐶 ∧ dom 𝑓 = ( { 𝑥 } ∪ trCl ( 𝑥 , 𝐴 , 𝑅 ) ) ) )
5 bnj1448.5 𝐷 = { 𝑥𝐴 ∣ ¬ ∃ 𝑓 𝜏 }
6 bnj1448.6 ( 𝜓 ↔ ( 𝑅 FrSe 𝐴𝐷 ≠ ∅ ) )
7 bnj1448.7 ( 𝜒 ↔ ( 𝜓𝑥𝐷 ∧ ∀ 𝑦𝐷 ¬ 𝑦 𝑅 𝑥 ) )
8 bnj1448.8 ( 𝜏′[ 𝑦 / 𝑥 ] 𝜏 )
9 bnj1448.9 𝐻 = { 𝑓 ∣ ∃ 𝑦 ∈ pred ( 𝑥 , 𝐴 , 𝑅 ) 𝜏′ }
10 bnj1448.10 𝑃 = 𝐻
11 bnj1448.11 𝑍 = ⟨ 𝑥 , ( 𝑃 ↾ pred ( 𝑥 , 𝐴 , 𝑅 ) ) ⟩
12 bnj1448.12 𝑄 = ( 𝑃 ∪ { ⟨ 𝑥 , ( 𝐺𝑍 ) ⟩ } )
13 bnj1448.13 𝑊 = ⟨ 𝑧 , ( 𝑄 ↾ pred ( 𝑧 , 𝐴 , 𝑅 ) ) ⟩
14 9 bnj1317 ( 𝑤𝐻 → ∀ 𝑓 𝑤𝐻 )
15 14 nfcii 𝑓 𝐻
16 15 nfuni 𝑓 𝐻
17 10 16 nfcxfr 𝑓 𝑃
18 nfcv 𝑓 𝑥
19 nfcv 𝑓 𝐺
20 nfcv 𝑓 pred ( 𝑥 , 𝐴 , 𝑅 )
21 17 20 nfres 𝑓 ( 𝑃 ↾ pred ( 𝑥 , 𝐴 , 𝑅 ) )
22 18 21 nfop 𝑓𝑥 , ( 𝑃 ↾ pred ( 𝑥 , 𝐴 , 𝑅 ) ) ⟩
23 11 22 nfcxfr 𝑓 𝑍
24 19 23 nffv 𝑓 ( 𝐺𝑍 )
25 18 24 nfop 𝑓𝑥 , ( 𝐺𝑍 ) ⟩
26 25 nfsn 𝑓 { ⟨ 𝑥 , ( 𝐺𝑍 ) ⟩ }
27 17 26 nfun 𝑓 ( 𝑃 ∪ { ⟨ 𝑥 , ( 𝐺𝑍 ) ⟩ } )
28 12 27 nfcxfr 𝑓 𝑄
29 nfcv 𝑓 𝑧
30 28 29 nffv 𝑓 ( 𝑄𝑧 )
31 nfcv 𝑓 pred ( 𝑧 , 𝐴 , 𝑅 )
32 28 31 nfres 𝑓 ( 𝑄 ↾ pred ( 𝑧 , 𝐴 , 𝑅 ) )
33 29 32 nfop 𝑓𝑧 , ( 𝑄 ↾ pred ( 𝑧 , 𝐴 , 𝑅 ) ) ⟩
34 13 33 nfcxfr 𝑓 𝑊
35 19 34 nffv 𝑓 ( 𝐺𝑊 )
36 30 35 nfeq 𝑓 ( 𝑄𝑧 ) = ( 𝐺𝑊 )
37 36 nf5ri ( ( 𝑄𝑧 ) = ( 𝐺𝑊 ) → ∀ 𝑓 ( 𝑄𝑧 ) = ( 𝐺𝑊 ) )