Metamath Proof Explorer


Theorem bnj1450

Description: Technical lemma for bnj60 . This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (New usage is discouraged.)

Ref Expression
Hypotheses bnj1450.1 𝐵 = { 𝑑 ∣ ( 𝑑𝐴 ∧ ∀ 𝑥𝑑 pred ( 𝑥 , 𝐴 , 𝑅 ) ⊆ 𝑑 ) }
bnj1450.2 𝑌 = ⟨ 𝑥 , ( 𝑓 ↾ pred ( 𝑥 , 𝐴 , 𝑅 ) ) ⟩
bnj1450.3 𝐶 = { 𝑓 ∣ ∃ 𝑑𝐵 ( 𝑓 Fn 𝑑 ∧ ∀ 𝑥𝑑 ( 𝑓𝑥 ) = ( 𝐺𝑌 ) ) }
bnj1450.4 ( 𝜏 ↔ ( 𝑓𝐶 ∧ dom 𝑓 = ( { 𝑥 } ∪ trCl ( 𝑥 , 𝐴 , 𝑅 ) ) ) )
bnj1450.5 𝐷 = { 𝑥𝐴 ∣ ¬ ∃ 𝑓 𝜏 }
bnj1450.6 ( 𝜓 ↔ ( 𝑅 FrSe 𝐴𝐷 ≠ ∅ ) )
bnj1450.7 ( 𝜒 ↔ ( 𝜓𝑥𝐷 ∧ ∀ 𝑦𝐷 ¬ 𝑦 𝑅 𝑥 ) )
bnj1450.8 ( 𝜏′[ 𝑦 / 𝑥 ] 𝜏 )
bnj1450.9 𝐻 = { 𝑓 ∣ ∃ 𝑦 ∈ pred ( 𝑥 , 𝐴 , 𝑅 ) 𝜏′ }
bnj1450.10 𝑃 = 𝐻
bnj1450.11 𝑍 = ⟨ 𝑥 , ( 𝑃 ↾ pred ( 𝑥 , 𝐴 , 𝑅 ) ) ⟩
bnj1450.12 𝑄 = ( 𝑃 ∪ { ⟨ 𝑥 , ( 𝐺𝑍 ) ⟩ } )
bnj1450.13 𝑊 = ⟨ 𝑧 , ( 𝑄 ↾ pred ( 𝑧 , 𝐴 , 𝑅 ) ) ⟩
bnj1450.14 𝐸 = ( { 𝑥 } ∪ trCl ( 𝑥 , 𝐴 , 𝑅 ) )
bnj1450.15 ( 𝜒𝑃 Fn trCl ( 𝑥 , 𝐴 , 𝑅 ) )
bnj1450.16 ( 𝜒𝑄 Fn ( { 𝑥 } ∪ trCl ( 𝑥 , 𝐴 , 𝑅 ) ) )
bnj1450.17 ( 𝜃 ↔ ( 𝜒𝑧𝐸 ) )
bnj1450.18 ( 𝜂 ↔ ( 𝜃𝑧 ∈ { 𝑥 } ) )
bnj1450.19 ( 𝜁 ↔ ( 𝜃𝑧 ∈ trCl ( 𝑥 , 𝐴 , 𝑅 ) ) )
bnj1450.20 ( 𝜌 ↔ ( 𝜁𝑓𝐻𝑧 ∈ dom 𝑓 ) )
bnj1450.21 ( 𝜎 ↔ ( 𝜌𝑦 ∈ pred ( 𝑥 , 𝐴 , 𝑅 ) ∧ 𝑓𝐶 ∧ dom 𝑓 = ( { 𝑦 } ∪ trCl ( 𝑦 , 𝐴 , 𝑅 ) ) ) )
bnj1450.22 ( 𝜑 ↔ ( 𝜎𝑑𝐵𝑓 Fn 𝑑 ∧ ∀ 𝑥𝑑 ( 𝑓𝑥 ) = ( 𝐺𝑌 ) ) )
bnj1450.23 𝑋 = ⟨ 𝑧 , ( 𝑓 ↾ pred ( 𝑧 , 𝐴 , 𝑅 ) ) ⟩
Assertion bnj1450 ( 𝜁 → ( 𝑄𝑧 ) = ( 𝐺𝑊 ) )

Proof

Step Hyp Ref Expression
1 bnj1450.1 𝐵 = { 𝑑 ∣ ( 𝑑𝐴 ∧ ∀ 𝑥𝑑 pred ( 𝑥 , 𝐴 , 𝑅 ) ⊆ 𝑑 ) }
2 bnj1450.2 𝑌 = ⟨ 𝑥 , ( 𝑓 ↾ pred ( 𝑥 , 𝐴 , 𝑅 ) ) ⟩
3 bnj1450.3 𝐶 = { 𝑓 ∣ ∃ 𝑑𝐵 ( 𝑓 Fn 𝑑 ∧ ∀ 𝑥𝑑 ( 𝑓𝑥 ) = ( 𝐺𝑌 ) ) }
4 bnj1450.4 ( 𝜏 ↔ ( 𝑓𝐶 ∧ dom 𝑓 = ( { 𝑥 } ∪ trCl ( 𝑥 , 𝐴 , 𝑅 ) ) ) )
5 bnj1450.5 𝐷 = { 𝑥𝐴 ∣ ¬ ∃ 𝑓 𝜏 }
6 bnj1450.6 ( 𝜓 ↔ ( 𝑅 FrSe 𝐴𝐷 ≠ ∅ ) )
7 bnj1450.7 ( 𝜒 ↔ ( 𝜓𝑥𝐷 ∧ ∀ 𝑦𝐷 ¬ 𝑦 𝑅 𝑥 ) )
8 bnj1450.8 ( 𝜏′[ 𝑦 / 𝑥 ] 𝜏 )
9 bnj1450.9 𝐻 = { 𝑓 ∣ ∃ 𝑦 ∈ pred ( 𝑥 , 𝐴 , 𝑅 ) 𝜏′ }
10 bnj1450.10 𝑃 = 𝐻
11 bnj1450.11 𝑍 = ⟨ 𝑥 , ( 𝑃 ↾ pred ( 𝑥 , 𝐴 , 𝑅 ) ) ⟩
12 bnj1450.12 𝑄 = ( 𝑃 ∪ { ⟨ 𝑥 , ( 𝐺𝑍 ) ⟩ } )
13 bnj1450.13 𝑊 = ⟨ 𝑧 , ( 𝑄 ↾ pred ( 𝑧 , 𝐴 , 𝑅 ) ) ⟩
14 bnj1450.14 𝐸 = ( { 𝑥 } ∪ trCl ( 𝑥 , 𝐴 , 𝑅 ) )
15 bnj1450.15 ( 𝜒𝑃 Fn trCl ( 𝑥 , 𝐴 , 𝑅 ) )
16 bnj1450.16 ( 𝜒𝑄 Fn ( { 𝑥 } ∪ trCl ( 𝑥 , 𝐴 , 𝑅 ) ) )
17 bnj1450.17 ( 𝜃 ↔ ( 𝜒𝑧𝐸 ) )
18 bnj1450.18 ( 𝜂 ↔ ( 𝜃𝑧 ∈ { 𝑥 } ) )
19 bnj1450.19 ( 𝜁 ↔ ( 𝜃𝑧 ∈ trCl ( 𝑥 , 𝐴 , 𝑅 ) ) )
20 bnj1450.20 ( 𝜌 ↔ ( 𝜁𝑓𝐻𝑧 ∈ dom 𝑓 ) )
21 bnj1450.21 ( 𝜎 ↔ ( 𝜌𝑦 ∈ pred ( 𝑥 , 𝐴 , 𝑅 ) ∧ 𝑓𝐶 ∧ dom 𝑓 = ( { 𝑦 } ∪ trCl ( 𝑦 , 𝐴 , 𝑅 ) ) ) )
22 bnj1450.22 ( 𝜑 ↔ ( 𝜎𝑑𝐵𝑓 Fn 𝑑 ∧ ∀ 𝑥𝑑 ( 𝑓𝑥 ) = ( 𝐺𝑌 ) ) )
23 bnj1450.23 𝑋 = ⟨ 𝑧 , ( 𝑓 ↾ pred ( 𝑧 , 𝐴 , 𝑅 ) ) ⟩
24 19 simprbi ( 𝜁𝑧 ∈ trCl ( 𝑥 , 𝐴 , 𝑅 ) )
25 15 fndmd ( 𝜒 → dom 𝑃 = trCl ( 𝑥 , 𝐴 , 𝑅 ) )
26 17 25 bnj832 ( 𝜃 → dom 𝑃 = trCl ( 𝑥 , 𝐴 , 𝑅 ) )
27 19 26 bnj832 ( 𝜁 → dom 𝑃 = trCl ( 𝑥 , 𝐴 , 𝑅 ) )
28 24 27 eleqtrrd ( 𝜁𝑧 ∈ dom 𝑃 )
29 10 dmeqi dom 𝑃 = dom 𝐻
30 28 29 eleqtrdi ( 𝜁𝑧 ∈ dom 𝐻 )
31 9 bnj1317 ( 𝑤𝐻 → ∀ 𝑓 𝑤𝐻 )
32 31 bnj1400 dom 𝐻 = 𝑓𝐻 dom 𝑓
33 30 32 eleqtrdi ( 𝜁𝑧 𝑓𝐻 dom 𝑓 )
34 33 bnj1405 ( 𝜁 → ∃ 𝑓𝐻 𝑧 ∈ dom 𝑓 )
35 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 bnj1449 ( 𝜁 → ∀ 𝑓 𝜁 )
36 34 20 35 bnj1521 ( 𝜁 → ∃ 𝑓 𝜌 )
37 9 bnj1436 ( 𝑓𝐻 → ∃ 𝑦 ∈ pred ( 𝑥 , 𝐴 , 𝑅 ) 𝜏′ )
38 20 37 bnj836 ( 𝜌 → ∃ 𝑦 ∈ pred ( 𝑥 , 𝐴 , 𝑅 ) 𝜏′ )
39 1 2 3 4 8 bnj1373 ( 𝜏′ ↔ ( 𝑓𝐶 ∧ dom 𝑓 = ( { 𝑦 } ∪ trCl ( 𝑦 , 𝐴 , 𝑅 ) ) ) )
40 39 rexbii ( ∃ 𝑦 ∈ pred ( 𝑥 , 𝐴 , 𝑅 ) 𝜏′ ↔ ∃ 𝑦 ∈ pred ( 𝑥 , 𝐴 , 𝑅 ) ( 𝑓𝐶 ∧ dom 𝑓 = ( { 𝑦 } ∪ trCl ( 𝑦 , 𝐴 , 𝑅 ) ) ) )
41 38 40 sylib ( 𝜌 → ∃ 𝑦 ∈ pred ( 𝑥 , 𝐴 , 𝑅 ) ( 𝑓𝐶 ∧ dom 𝑓 = ( { 𝑦 } ∪ trCl ( 𝑦 , 𝐴 , 𝑅 ) ) ) )
42 41 bnj1196 ( 𝜌 → ∃ 𝑦 ( 𝑦 ∈ pred ( 𝑥 , 𝐴 , 𝑅 ) ∧ ( 𝑓𝐶 ∧ dom 𝑓 = ( { 𝑦 } ∪ trCl ( 𝑦 , 𝐴 , 𝑅 ) ) ) ) )
43 3anass ( ( 𝑦 ∈ pred ( 𝑥 , 𝐴 , 𝑅 ) ∧ 𝑓𝐶 ∧ dom 𝑓 = ( { 𝑦 } ∪ trCl ( 𝑦 , 𝐴 , 𝑅 ) ) ) ↔ ( 𝑦 ∈ pred ( 𝑥 , 𝐴 , 𝑅 ) ∧ ( 𝑓𝐶 ∧ dom 𝑓 = ( { 𝑦 } ∪ trCl ( 𝑦 , 𝐴 , 𝑅 ) ) ) ) )
44 42 43 bnj1198 ( 𝜌 → ∃ 𝑦 ( 𝑦 ∈ pred ( 𝑥 , 𝐴 , 𝑅 ) ∧ 𝑓𝐶 ∧ dom 𝑓 = ( { 𝑦 } ∪ trCl ( 𝑦 , 𝐴 , 𝑅 ) ) ) )
45 bnj252 ( ( 𝜌𝑦 ∈ pred ( 𝑥 , 𝐴 , 𝑅 ) ∧ 𝑓𝐶 ∧ dom 𝑓 = ( { 𝑦 } ∪ trCl ( 𝑦 , 𝐴 , 𝑅 ) ) ) ↔ ( 𝜌 ∧ ( 𝑦 ∈ pred ( 𝑥 , 𝐴 , 𝑅 ) ∧ 𝑓𝐶 ∧ dom 𝑓 = ( { 𝑦 } ∪ trCl ( 𝑦 , 𝐴 , 𝑅 ) ) ) ) )
46 21 45 bitri ( 𝜎 ↔ ( 𝜌 ∧ ( 𝑦 ∈ pred ( 𝑥 , 𝐴 , 𝑅 ) ∧ 𝑓𝐶 ∧ dom 𝑓 = ( { 𝑦 } ∪ trCl ( 𝑦 , 𝐴 , 𝑅 ) ) ) ) )
47 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 bnj1444 ( 𝜌 → ∀ 𝑦 𝜌 )
48 44 46 47 bnj1340 ( 𝜌 → ∃ 𝑦 𝜎 )
49 3 bnj1436 ( 𝑓𝐶 → ∃ 𝑑𝐵 ( 𝑓 Fn 𝑑 ∧ ∀ 𝑥𝑑 ( 𝑓𝑥 ) = ( 𝐺𝑌 ) ) )
50 21 49 bnj771 ( 𝜎 → ∃ 𝑑𝐵 ( 𝑓 Fn 𝑑 ∧ ∀ 𝑥𝑑 ( 𝑓𝑥 ) = ( 𝐺𝑌 ) ) )
51 50 bnj1196 ( 𝜎 → ∃ 𝑑 ( 𝑑𝐵 ∧ ( 𝑓 Fn 𝑑 ∧ ∀ 𝑥𝑑 ( 𝑓𝑥 ) = ( 𝐺𝑌 ) ) ) )
52 3anass ( ( 𝑑𝐵𝑓 Fn 𝑑 ∧ ∀ 𝑥𝑑 ( 𝑓𝑥 ) = ( 𝐺𝑌 ) ) ↔ ( 𝑑𝐵 ∧ ( 𝑓 Fn 𝑑 ∧ ∀ 𝑥𝑑 ( 𝑓𝑥 ) = ( 𝐺𝑌 ) ) ) )
53 51 52 bnj1198 ( 𝜎 → ∃ 𝑑 ( 𝑑𝐵𝑓 Fn 𝑑 ∧ ∀ 𝑥𝑑 ( 𝑓𝑥 ) = ( 𝐺𝑌 ) ) )
54 bnj252 ( ( 𝜎𝑑𝐵𝑓 Fn 𝑑 ∧ ∀ 𝑥𝑑 ( 𝑓𝑥 ) = ( 𝐺𝑌 ) ) ↔ ( 𝜎 ∧ ( 𝑑𝐵𝑓 Fn 𝑑 ∧ ∀ 𝑥𝑑 ( 𝑓𝑥 ) = ( 𝐺𝑌 ) ) ) )
55 22 54 bitri ( 𝜑 ↔ ( 𝜎 ∧ ( 𝑑𝐵𝑓 Fn 𝑑 ∧ ∀ 𝑥𝑑 ( 𝑓𝑥 ) = ( 𝐺𝑌 ) ) ) )
56 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 bnj1445 ( 𝜎 → ∀ 𝑑 𝜎 )
57 53 55 56 bnj1340 ( 𝜎 → ∃ 𝑑 𝜑 )
58 fveq2 ( 𝑥 = 𝑧 → ( 𝑓𝑥 ) = ( 𝑓𝑧 ) )
59 id ( 𝑥 = 𝑧𝑥 = 𝑧 )
60 bnj602 ( 𝑥 = 𝑧 → pred ( 𝑥 , 𝐴 , 𝑅 ) = pred ( 𝑧 , 𝐴 , 𝑅 ) )
61 60 reseq2d ( 𝑥 = 𝑧 → ( 𝑓 ↾ pred ( 𝑥 , 𝐴 , 𝑅 ) ) = ( 𝑓 ↾ pred ( 𝑧 , 𝐴 , 𝑅 ) ) )
62 59 61 opeq12d ( 𝑥 = 𝑧 → ⟨ 𝑥 , ( 𝑓 ↾ pred ( 𝑥 , 𝐴 , 𝑅 ) ) ⟩ = ⟨ 𝑧 , ( 𝑓 ↾ pred ( 𝑧 , 𝐴 , 𝑅 ) ) ⟩ )
63 62 2 23 3eqtr4g ( 𝑥 = 𝑧𝑌 = 𝑋 )
64 63 fveq2d ( 𝑥 = 𝑧 → ( 𝐺𝑌 ) = ( 𝐺𝑋 ) )
65 58 64 eqeq12d ( 𝑥 = 𝑧 → ( ( 𝑓𝑥 ) = ( 𝐺𝑌 ) ↔ ( 𝑓𝑧 ) = ( 𝐺𝑋 ) ) )
66 22 bnj1254 ( 𝜑 → ∀ 𝑥𝑑 ( 𝑓𝑥 ) = ( 𝐺𝑌 ) )
67 20 simp3bi ( 𝜌𝑧 ∈ dom 𝑓 )
68 21 67 bnj769 ( 𝜎𝑧 ∈ dom 𝑓 )
69 22 68 bnj769 ( 𝜑𝑧 ∈ dom 𝑓 )
70 fndm ( 𝑓 Fn 𝑑 → dom 𝑓 = 𝑑 )
71 22 70 bnj771 ( 𝜑 → dom 𝑓 = 𝑑 )
72 69 71 eleqtrd ( 𝜑𝑧𝑑 )
73 65 66 72 rspcdva ( 𝜑 → ( 𝑓𝑧 ) = ( 𝐺𝑋 ) )
74 16 fnfund ( 𝜒 → Fun 𝑄 )
75 17 74 bnj832 ( 𝜃 → Fun 𝑄 )
76 19 75 bnj832 ( 𝜁 → Fun 𝑄 )
77 20 76 bnj835 ( 𝜌 → Fun 𝑄 )
78 21 77 bnj769 ( 𝜎 → Fun 𝑄 )
79 22 78 bnj769 ( 𝜑 → Fun 𝑄 )
80 20 simp2bi ( 𝜌𝑓𝐻 )
81 21 80 bnj769 ( 𝜎𝑓𝐻 )
82 22 81 bnj769 ( 𝜑𝑓𝐻 )
83 elssuni ( 𝑓𝐻𝑓 𝐻 )
84 83 10 sseqtrrdi ( 𝑓𝐻𝑓𝑃 )
85 ssun3 ( 𝑓𝑃𝑓 ⊆ ( 𝑃 ∪ { ⟨ 𝑥 , ( 𝐺𝑍 ) ⟩ } ) )
86 85 12 sseqtrrdi ( 𝑓𝑃𝑓𝑄 )
87 82 84 86 3syl ( 𝜑𝑓𝑄 )
88 79 87 69 bnj1502 ( 𝜑 → ( 𝑄𝑧 ) = ( 𝑓𝑧 ) )
89 60 sseq1d ( 𝑥 = 𝑧 → ( pred ( 𝑥 , 𝐴 , 𝑅 ) ⊆ 𝑑 ↔ pred ( 𝑧 , 𝐴 , 𝑅 ) ⊆ 𝑑 ) )
90 1 bnj1517 ( 𝑑𝐵 → ∀ 𝑥𝑑 pred ( 𝑥 , 𝐴 , 𝑅 ) ⊆ 𝑑 )
91 22 90 bnj770 ( 𝜑 → ∀ 𝑥𝑑 pred ( 𝑥 , 𝐴 , 𝑅 ) ⊆ 𝑑 )
92 89 91 72 rspcdva ( 𝜑 → pred ( 𝑧 , 𝐴 , 𝑅 ) ⊆ 𝑑 )
93 92 71 sseqtrrd ( 𝜑 → pred ( 𝑧 , 𝐴 , 𝑅 ) ⊆ dom 𝑓 )
94 79 87 93 bnj1503 ( 𝜑 → ( 𝑄 ↾ pred ( 𝑧 , 𝐴 , 𝑅 ) ) = ( 𝑓 ↾ pred ( 𝑧 , 𝐴 , 𝑅 ) ) )
95 94 opeq2d ( 𝜑 → ⟨ 𝑧 , ( 𝑄 ↾ pred ( 𝑧 , 𝐴 , 𝑅 ) ) ⟩ = ⟨ 𝑧 , ( 𝑓 ↾ pred ( 𝑧 , 𝐴 , 𝑅 ) ) ⟩ )
96 95 13 23 3eqtr4g ( 𝜑𝑊 = 𝑋 )
97 96 fveq2d ( 𝜑 → ( 𝐺𝑊 ) = ( 𝐺𝑋 ) )
98 73 88 97 3eqtr4d ( 𝜑 → ( 𝑄𝑧 ) = ( 𝐺𝑊 ) )
99 57 98 bnj593 ( 𝜎 → ∃ 𝑑 ( 𝑄𝑧 ) = ( 𝐺𝑊 ) )
100 1 2 3 4 5 6 7 8 9 10 11 12 13 bnj1446 ( ( 𝑄𝑧 ) = ( 𝐺𝑊 ) → ∀ 𝑑 ( 𝑄𝑧 ) = ( 𝐺𝑊 ) )
101 99 100 bnj1397 ( 𝜎 → ( 𝑄𝑧 ) = ( 𝐺𝑊 ) )
102 48 101 bnj593 ( 𝜌 → ∃ 𝑦 ( 𝑄𝑧 ) = ( 𝐺𝑊 ) )
103 1 2 3 4 5 6 7 8 9 10 11 12 13 bnj1447 ( ( 𝑄𝑧 ) = ( 𝐺𝑊 ) → ∀ 𝑦 ( 𝑄𝑧 ) = ( 𝐺𝑊 ) )
104 102 103 bnj1397 ( 𝜌 → ( 𝑄𝑧 ) = ( 𝐺𝑊 ) )
105 36 104 bnj593 ( 𝜁 → ∃ 𝑓 ( 𝑄𝑧 ) = ( 𝐺𝑊 ) )
106 1 2 3 4 5 6 7 8 9 10 11 12 13 bnj1448 ( ( 𝑄𝑧 ) = ( 𝐺𝑊 ) → ∀ 𝑓 ( 𝑄𝑧 ) = ( 𝐺𝑊 ) )
107 105 106 bnj1397 ( 𝜁 → ( 𝑄𝑧 ) = ( 𝐺𝑊 ) )