Metamath Proof Explorer


Theorem bnj1459

Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (New usage is discouraged.)

Ref Expression
Hypotheses bnj1459.1 ( 𝜓 ↔ ( 𝜑𝑥𝐴 ) )
bnj1459.2 ( 𝜓𝜒 )
Assertion bnj1459 ( 𝜑 → ∀ 𝑥𝐴 𝜒 )

Proof

Step Hyp Ref Expression
1 bnj1459.1 ( 𝜓 ↔ ( 𝜑𝑥𝐴 ) )
2 bnj1459.2 ( 𝜓𝜒 )
3 1 2 sylbir ( ( 𝜑𝑥𝐴 ) → 𝜒 )
4 3 ralrimiva ( 𝜑 → ∀ 𝑥𝐴 𝜒 )