Metamath Proof Explorer
Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (New usage is discouraged.)
|
|
Ref |
Expression |
|
Hypotheses |
bnj1459.1 |
⊢ ( 𝜓 ↔ ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ) |
|
|
bnj1459.2 |
⊢ ( 𝜓 → 𝜒 ) |
|
Assertion |
bnj1459 |
⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐴 𝜒 ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
bnj1459.1 |
⊢ ( 𝜓 ↔ ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ) |
2 |
|
bnj1459.2 |
⊢ ( 𝜓 → 𝜒 ) |
3 |
1 2
|
sylbir |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝜒 ) |
4 |
3
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐴 𝜒 ) |