Metamath Proof Explorer
		
		
		
		Description:  First-order logic and set theory.  (Contributed by Jonathan Ben-Naim, 3-Jun-2011)  (New usage is discouraged.)
		
			
				
					 | 
					 | 
					Ref | 
					Expression | 
				
					
						 | 
						Hypotheses | 
						bnj1459.1 | 
						⊢ ( 𝜓  ↔  ( 𝜑  ∧  𝑥  ∈  𝐴 ) )  | 
					
					
						 | 
						 | 
						bnj1459.2 | 
						⊢ ( 𝜓  →  𝜒 )  | 
					
				
					 | 
					Assertion | 
					bnj1459 | 
					⊢  ( 𝜑  →  ∀ 𝑥  ∈  𝐴 𝜒 )  | 
				
			
		
		
			
				Proof
				
					
						| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							bnj1459.1 | 
							⊢ ( 𝜓  ↔  ( 𝜑  ∧  𝑥  ∈  𝐴 ) )  | 
						
						
							| 2 | 
							
								
							 | 
							bnj1459.2 | 
							⊢ ( 𝜓  →  𝜒 )  | 
						
						
							| 3 | 
							
								1 2
							 | 
							sylbir | 
							⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  𝜒 )  | 
						
						
							| 4 | 
							
								3
							 | 
							ralrimiva | 
							⊢ ( 𝜑  →  ∀ 𝑥  ∈  𝐴 𝜒 )  |