Metamath Proof Explorer


Theorem bnj1465

Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (New usage is discouraged.)

Ref Expression
Hypotheses bnj1465.1 ( 𝑥 = 𝐴 → ( 𝜑𝜓 ) )
bnj1465.2 ( 𝜓 → ∀ 𝑥 𝜓 )
bnj1465.3 ( 𝜒𝜓 )
Assertion bnj1465 ( ( 𝜒𝐴𝑉 ) → ∃ 𝑥 𝜑 )

Proof

Step Hyp Ref Expression
1 bnj1465.1 ( 𝑥 = 𝐴 → ( 𝜑𝜓 ) )
2 bnj1465.2 ( 𝜓 → ∀ 𝑥 𝜓 )
3 bnj1465.3 ( 𝜒𝜓 )
4 3 adantr ( ( 𝜒𝐴𝑉 ) → 𝜓 )
5 2 1 bnj1464 ( 𝐴𝑉 → ( [ 𝐴 / 𝑥 ] 𝜑𝜓 ) )
6 5 adantl ( ( 𝜒𝐴𝑉 ) → ( [ 𝐴 / 𝑥 ] 𝜑𝜓 ) )
7 4 6 mpbird ( ( 𝜒𝐴𝑉 ) → [ 𝐴 / 𝑥 ] 𝜑 )
8 7 spesbcd ( ( 𝜒𝐴𝑉 ) → ∃ 𝑥 𝜑 )