Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Hypotheses | bnj1465.1 | ⊢ ( 𝑥 = 𝐴 → ( 𝜑 ↔ 𝜓 ) ) | |
bnj1465.2 | ⊢ ( 𝜓 → ∀ 𝑥 𝜓 ) | ||
bnj1465.3 | ⊢ ( 𝜒 → 𝜓 ) | ||
Assertion | bnj1465 | ⊢ ( ( 𝜒 ∧ 𝐴 ∈ 𝑉 ) → ∃ 𝑥 𝜑 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bnj1465.1 | ⊢ ( 𝑥 = 𝐴 → ( 𝜑 ↔ 𝜓 ) ) | |
2 | bnj1465.2 | ⊢ ( 𝜓 → ∀ 𝑥 𝜓 ) | |
3 | bnj1465.3 | ⊢ ( 𝜒 → 𝜓 ) | |
4 | 3 | adantr | ⊢ ( ( 𝜒 ∧ 𝐴 ∈ 𝑉 ) → 𝜓 ) |
5 | 2 1 | bnj1464 | ⊢ ( 𝐴 ∈ 𝑉 → ( [ 𝐴 / 𝑥 ] 𝜑 ↔ 𝜓 ) ) |
6 | 5 | adantl | ⊢ ( ( 𝜒 ∧ 𝐴 ∈ 𝑉 ) → ( [ 𝐴 / 𝑥 ] 𝜑 ↔ 𝜓 ) ) |
7 | 4 6 | mpbird | ⊢ ( ( 𝜒 ∧ 𝐴 ∈ 𝑉 ) → [ 𝐴 / 𝑥 ] 𝜑 ) |
8 | 7 | spesbcd | ⊢ ( ( 𝜒 ∧ 𝐴 ∈ 𝑉 ) → ∃ 𝑥 𝜑 ) |