Step |
Hyp |
Ref |
Expression |
1 |
|
bnj1467.1 |
⊢ 𝐵 = { 𝑑 ∣ ( 𝑑 ⊆ 𝐴 ∧ ∀ 𝑥 ∈ 𝑑 pred ( 𝑥 , 𝐴 , 𝑅 ) ⊆ 𝑑 ) } |
2 |
|
bnj1467.2 |
⊢ 𝑌 = 〈 𝑥 , ( 𝑓 ↾ pred ( 𝑥 , 𝐴 , 𝑅 ) ) 〉 |
3 |
|
bnj1467.3 |
⊢ 𝐶 = { 𝑓 ∣ ∃ 𝑑 ∈ 𝐵 ( 𝑓 Fn 𝑑 ∧ ∀ 𝑥 ∈ 𝑑 ( 𝑓 ‘ 𝑥 ) = ( 𝐺 ‘ 𝑌 ) ) } |
4 |
|
bnj1467.4 |
⊢ ( 𝜏 ↔ ( 𝑓 ∈ 𝐶 ∧ dom 𝑓 = ( { 𝑥 } ∪ trCl ( 𝑥 , 𝐴 , 𝑅 ) ) ) ) |
5 |
|
bnj1467.5 |
⊢ 𝐷 = { 𝑥 ∈ 𝐴 ∣ ¬ ∃ 𝑓 𝜏 } |
6 |
|
bnj1467.6 |
⊢ ( 𝜓 ↔ ( 𝑅 FrSe 𝐴 ∧ 𝐷 ≠ ∅ ) ) |
7 |
|
bnj1467.7 |
⊢ ( 𝜒 ↔ ( 𝜓 ∧ 𝑥 ∈ 𝐷 ∧ ∀ 𝑦 ∈ 𝐷 ¬ 𝑦 𝑅 𝑥 ) ) |
8 |
|
bnj1467.8 |
⊢ ( 𝜏′ ↔ [ 𝑦 / 𝑥 ] 𝜏 ) |
9 |
|
bnj1467.9 |
⊢ 𝐻 = { 𝑓 ∣ ∃ 𝑦 ∈ pred ( 𝑥 , 𝐴 , 𝑅 ) 𝜏′ } |
10 |
|
bnj1467.10 |
⊢ 𝑃 = ∪ 𝐻 |
11 |
|
bnj1467.11 |
⊢ 𝑍 = 〈 𝑥 , ( 𝑃 ↾ pred ( 𝑥 , 𝐴 , 𝑅 ) ) 〉 |
12 |
|
bnj1467.12 |
⊢ 𝑄 = ( 𝑃 ∪ { 〈 𝑥 , ( 𝐺 ‘ 𝑍 ) 〉 } ) |
13 |
|
nfcv |
⊢ Ⅎ 𝑑 pred ( 𝑥 , 𝐴 , 𝑅 ) |
14 |
|
nfcv |
⊢ Ⅎ 𝑑 𝑦 |
15 |
|
nfre1 |
⊢ Ⅎ 𝑑 ∃ 𝑑 ∈ 𝐵 ( 𝑓 Fn 𝑑 ∧ ∀ 𝑥 ∈ 𝑑 ( 𝑓 ‘ 𝑥 ) = ( 𝐺 ‘ 𝑌 ) ) |
16 |
15
|
nfab |
⊢ Ⅎ 𝑑 { 𝑓 ∣ ∃ 𝑑 ∈ 𝐵 ( 𝑓 Fn 𝑑 ∧ ∀ 𝑥 ∈ 𝑑 ( 𝑓 ‘ 𝑥 ) = ( 𝐺 ‘ 𝑌 ) ) } |
17 |
3 16
|
nfcxfr |
⊢ Ⅎ 𝑑 𝐶 |
18 |
17
|
nfcri |
⊢ Ⅎ 𝑑 𝑓 ∈ 𝐶 |
19 |
|
nfv |
⊢ Ⅎ 𝑑 dom 𝑓 = ( { 𝑥 } ∪ trCl ( 𝑥 , 𝐴 , 𝑅 ) ) |
20 |
18 19
|
nfan |
⊢ Ⅎ 𝑑 ( 𝑓 ∈ 𝐶 ∧ dom 𝑓 = ( { 𝑥 } ∪ trCl ( 𝑥 , 𝐴 , 𝑅 ) ) ) |
21 |
4 20
|
nfxfr |
⊢ Ⅎ 𝑑 𝜏 |
22 |
14 21
|
nfsbcw |
⊢ Ⅎ 𝑑 [ 𝑦 / 𝑥 ] 𝜏 |
23 |
8 22
|
nfxfr |
⊢ Ⅎ 𝑑 𝜏′ |
24 |
13 23
|
nfrex |
⊢ Ⅎ 𝑑 ∃ 𝑦 ∈ pred ( 𝑥 , 𝐴 , 𝑅 ) 𝜏′ |
25 |
24
|
nfab |
⊢ Ⅎ 𝑑 { 𝑓 ∣ ∃ 𝑦 ∈ pred ( 𝑥 , 𝐴 , 𝑅 ) 𝜏′ } |
26 |
9 25
|
nfcxfr |
⊢ Ⅎ 𝑑 𝐻 |
27 |
26
|
nfuni |
⊢ Ⅎ 𝑑 ∪ 𝐻 |
28 |
10 27
|
nfcxfr |
⊢ Ⅎ 𝑑 𝑃 |
29 |
|
nfcv |
⊢ Ⅎ 𝑑 𝑥 |
30 |
|
nfcv |
⊢ Ⅎ 𝑑 𝐺 |
31 |
28 13
|
nfres |
⊢ Ⅎ 𝑑 ( 𝑃 ↾ pred ( 𝑥 , 𝐴 , 𝑅 ) ) |
32 |
29 31
|
nfop |
⊢ Ⅎ 𝑑 〈 𝑥 , ( 𝑃 ↾ pred ( 𝑥 , 𝐴 , 𝑅 ) ) 〉 |
33 |
11 32
|
nfcxfr |
⊢ Ⅎ 𝑑 𝑍 |
34 |
30 33
|
nffv |
⊢ Ⅎ 𝑑 ( 𝐺 ‘ 𝑍 ) |
35 |
29 34
|
nfop |
⊢ Ⅎ 𝑑 〈 𝑥 , ( 𝐺 ‘ 𝑍 ) 〉 |
36 |
35
|
nfsn |
⊢ Ⅎ 𝑑 { 〈 𝑥 , ( 𝐺 ‘ 𝑍 ) 〉 } |
37 |
28 36
|
nfun |
⊢ Ⅎ 𝑑 ( 𝑃 ∪ { 〈 𝑥 , ( 𝐺 ‘ 𝑍 ) 〉 } ) |
38 |
12 37
|
nfcxfr |
⊢ Ⅎ 𝑑 𝑄 |
39 |
38
|
nfcrii |
⊢ ( 𝑤 ∈ 𝑄 → ∀ 𝑑 𝑤 ∈ 𝑄 ) |