Metamath Proof Explorer


Theorem bnj1468

Description: Conversion of implicit substitution to explicit class substitution. (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (New usage is discouraged.)

Ref Expression
Hypotheses bnj1468.1 ( 𝜓 → ∀ 𝑥 𝜓 )
bnj1468.2 ( 𝑥 = 𝐴 → ( 𝜑𝜓 ) )
bnj1468.3 ( 𝑦𝐴 → ∀ 𝑥 𝑦𝐴 )
Assertion bnj1468 ( 𝐴𝑉 → ( [ 𝐴 / 𝑥 ] 𝜑𝜓 ) )

Proof

Step Hyp Ref Expression
1 bnj1468.1 ( 𝜓 → ∀ 𝑥 𝜓 )
2 bnj1468.2 ( 𝑥 = 𝐴 → ( 𝜑𝜓 ) )
3 bnj1468.3 ( 𝑦𝐴 → ∀ 𝑥 𝑦𝐴 )
4 sbccow ( [ 𝐴 / 𝑦 ] [ 𝑦 / 𝑥 ] 𝜑[ 𝐴 / 𝑥 ] 𝜑 )
5 ax-5 ( 𝜓 → ∀ 𝑦 𝜓 )
6 3 nfcii 𝑥 𝐴
7 6 nfeq2 𝑥 𝑦 = 𝐴
8 nfsbc1v 𝑥 [ 𝑦 / 𝑥 ] 𝜑
9 1 nf5i 𝑥 𝜓
10 8 9 nfbi 𝑥 ( [ 𝑦 / 𝑥 ] 𝜑𝜓 )
11 7 10 nfim 𝑥 ( 𝑦 = 𝐴 → ( [ 𝑦 / 𝑥 ] 𝜑𝜓 ) )
12 11 nf5ri ( ( 𝑦 = 𝐴 → ( [ 𝑦 / 𝑥 ] 𝜑𝜓 ) ) → ∀ 𝑥 ( 𝑦 = 𝐴 → ( [ 𝑦 / 𝑥 ] 𝜑𝜓 ) ) )
13 ax6ev 𝑥 𝑥 = 𝑦
14 eqeq1 ( 𝑥 = 𝑦 → ( 𝑥 = 𝐴𝑦 = 𝐴 ) )
15 14 2 syl6bir ( 𝑥 = 𝑦 → ( 𝑦 = 𝐴 → ( 𝜑𝜓 ) ) )
16 sbceq1a ( 𝑥 = 𝑦 → ( 𝜑[ 𝑦 / 𝑥 ] 𝜑 ) )
17 16 bibi1d ( 𝑥 = 𝑦 → ( ( 𝜑𝜓 ) ↔ ( [ 𝑦 / 𝑥 ] 𝜑𝜓 ) ) )
18 15 17 sylibd ( 𝑥 = 𝑦 → ( 𝑦 = 𝐴 → ( [ 𝑦 / 𝑥 ] 𝜑𝜓 ) ) )
19 13 18 bnj101 𝑥 ( 𝑦 = 𝐴 → ( [ 𝑦 / 𝑥 ] 𝜑𝜓 ) )
20 12 19 bnj1131 ( 𝑦 = 𝐴 → ( [ 𝑦 / 𝑥 ] 𝜑𝜓 ) )
21 5 20 bnj1464 ( 𝐴𝑉 → ( [ 𝐴 / 𝑦 ] [ 𝑦 / 𝑥 ] 𝜑𝜓 ) )
22 4 21 bitr3id ( 𝐴𝑉 → ( [ 𝐴 / 𝑥 ] 𝜑𝜓 ) )