Step |
Hyp |
Ref |
Expression |
1 |
|
bnj1468.1 |
⊢ ( 𝜓 → ∀ 𝑥 𝜓 ) |
2 |
|
bnj1468.2 |
⊢ ( 𝑥 = 𝐴 → ( 𝜑 ↔ 𝜓 ) ) |
3 |
|
bnj1468.3 |
⊢ ( 𝑦 ∈ 𝐴 → ∀ 𝑥 𝑦 ∈ 𝐴 ) |
4 |
|
sbccow |
⊢ ( [ 𝐴 / 𝑦 ] [ 𝑦 / 𝑥 ] 𝜑 ↔ [ 𝐴 / 𝑥 ] 𝜑 ) |
5 |
|
ax-5 |
⊢ ( 𝜓 → ∀ 𝑦 𝜓 ) |
6 |
3
|
nfcii |
⊢ Ⅎ 𝑥 𝐴 |
7 |
6
|
nfeq2 |
⊢ Ⅎ 𝑥 𝑦 = 𝐴 |
8 |
|
nfsbc1v |
⊢ Ⅎ 𝑥 [ 𝑦 / 𝑥 ] 𝜑 |
9 |
1
|
nf5i |
⊢ Ⅎ 𝑥 𝜓 |
10 |
8 9
|
nfbi |
⊢ Ⅎ 𝑥 ( [ 𝑦 / 𝑥 ] 𝜑 ↔ 𝜓 ) |
11 |
7 10
|
nfim |
⊢ Ⅎ 𝑥 ( 𝑦 = 𝐴 → ( [ 𝑦 / 𝑥 ] 𝜑 ↔ 𝜓 ) ) |
12 |
11
|
nf5ri |
⊢ ( ( 𝑦 = 𝐴 → ( [ 𝑦 / 𝑥 ] 𝜑 ↔ 𝜓 ) ) → ∀ 𝑥 ( 𝑦 = 𝐴 → ( [ 𝑦 / 𝑥 ] 𝜑 ↔ 𝜓 ) ) ) |
13 |
|
ax6ev |
⊢ ∃ 𝑥 𝑥 = 𝑦 |
14 |
|
eqeq1 |
⊢ ( 𝑥 = 𝑦 → ( 𝑥 = 𝐴 ↔ 𝑦 = 𝐴 ) ) |
15 |
14 2
|
syl6bir |
⊢ ( 𝑥 = 𝑦 → ( 𝑦 = 𝐴 → ( 𝜑 ↔ 𝜓 ) ) ) |
16 |
|
sbceq1a |
⊢ ( 𝑥 = 𝑦 → ( 𝜑 ↔ [ 𝑦 / 𝑥 ] 𝜑 ) ) |
17 |
16
|
bibi1d |
⊢ ( 𝑥 = 𝑦 → ( ( 𝜑 ↔ 𝜓 ) ↔ ( [ 𝑦 / 𝑥 ] 𝜑 ↔ 𝜓 ) ) ) |
18 |
15 17
|
sylibd |
⊢ ( 𝑥 = 𝑦 → ( 𝑦 = 𝐴 → ( [ 𝑦 / 𝑥 ] 𝜑 ↔ 𝜓 ) ) ) |
19 |
13 18
|
bnj101 |
⊢ ∃ 𝑥 ( 𝑦 = 𝐴 → ( [ 𝑦 / 𝑥 ] 𝜑 ↔ 𝜓 ) ) |
20 |
12 19
|
bnj1131 |
⊢ ( 𝑦 = 𝐴 → ( [ 𝑦 / 𝑥 ] 𝜑 ↔ 𝜓 ) ) |
21 |
5 20
|
bnj1464 |
⊢ ( 𝐴 ∈ 𝑉 → ( [ 𝐴 / 𝑦 ] [ 𝑦 / 𝑥 ] 𝜑 ↔ 𝜓 ) ) |
22 |
4 21
|
bitr3id |
⊢ ( 𝐴 ∈ 𝑉 → ( [ 𝐴 / 𝑥 ] 𝜑 ↔ 𝜓 ) ) |