| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							bnj1493.1 | 
							⊢ 𝐵  =  { 𝑑  ∣  ( 𝑑  ⊆  𝐴  ∧  ∀ 𝑥  ∈  𝑑  pred ( 𝑥 ,  𝐴 ,  𝑅 )  ⊆  𝑑 ) }  | 
						
						
							| 2 | 
							
								
							 | 
							bnj1493.2 | 
							⊢ 𝑌  =  〈 𝑥 ,  ( 𝑓  ↾   pred ( 𝑥 ,  𝐴 ,  𝑅 ) ) 〉  | 
						
						
							| 3 | 
							
								
							 | 
							bnj1493.3 | 
							⊢ 𝐶  =  { 𝑓  ∣  ∃ 𝑑  ∈  𝐵 ( 𝑓  Fn  𝑑  ∧  ∀ 𝑥  ∈  𝑑 ( 𝑓 ‘ 𝑥 )  =  ( 𝐺 ‘ 𝑌 ) ) }  | 
						
						
							| 4 | 
							
								
							 | 
							biid | 
							⊢ ( ( 𝑓  ∈  𝐶  ∧  dom  𝑓  =  ( { 𝑥 }  ∪   trCl ( 𝑥 ,  𝐴 ,  𝑅 ) ) )  ↔  ( 𝑓  ∈  𝐶  ∧  dom  𝑓  =  ( { 𝑥 }  ∪   trCl ( 𝑥 ,  𝐴 ,  𝑅 ) ) ) )  | 
						
						
							| 5 | 
							
								
							 | 
							eqid | 
							⊢ { 𝑥  ∈  𝐴  ∣  ¬  ∃ 𝑓 ( 𝑓  ∈  𝐶  ∧  dom  𝑓  =  ( { 𝑥 }  ∪   trCl ( 𝑥 ,  𝐴 ,  𝑅 ) ) ) }  =  { 𝑥  ∈  𝐴  ∣  ¬  ∃ 𝑓 ( 𝑓  ∈  𝐶  ∧  dom  𝑓  =  ( { 𝑥 }  ∪   trCl ( 𝑥 ,  𝐴 ,  𝑅 ) ) ) }  | 
						
						
							| 6 | 
							
								
							 | 
							biid | 
							⊢ ( ( 𝑅  FrSe  𝐴  ∧  { 𝑥  ∈  𝐴  ∣  ¬  ∃ 𝑓 ( 𝑓  ∈  𝐶  ∧  dom  𝑓  =  ( { 𝑥 }  ∪   trCl ( 𝑥 ,  𝐴 ,  𝑅 ) ) ) }  ≠  ∅ )  ↔  ( 𝑅  FrSe  𝐴  ∧  { 𝑥  ∈  𝐴  ∣  ¬  ∃ 𝑓 ( 𝑓  ∈  𝐶  ∧  dom  𝑓  =  ( { 𝑥 }  ∪   trCl ( 𝑥 ,  𝐴 ,  𝑅 ) ) ) }  ≠  ∅ ) )  | 
						
						
							| 7 | 
							
								
							 | 
							biid | 
							⊢ ( ( ( 𝑅  FrSe  𝐴  ∧  { 𝑥  ∈  𝐴  ∣  ¬  ∃ 𝑓 ( 𝑓  ∈  𝐶  ∧  dom  𝑓  =  ( { 𝑥 }  ∪   trCl ( 𝑥 ,  𝐴 ,  𝑅 ) ) ) }  ≠  ∅ )  ∧  𝑥  ∈  { 𝑥  ∈  𝐴  ∣  ¬  ∃ 𝑓 ( 𝑓  ∈  𝐶  ∧  dom  𝑓  =  ( { 𝑥 }  ∪   trCl ( 𝑥 ,  𝐴 ,  𝑅 ) ) ) }  ∧  ∀ 𝑦  ∈  { 𝑥  ∈  𝐴  ∣  ¬  ∃ 𝑓 ( 𝑓  ∈  𝐶  ∧  dom  𝑓  =  ( { 𝑥 }  ∪   trCl ( 𝑥 ,  𝐴 ,  𝑅 ) ) ) } ¬  𝑦 𝑅 𝑥 )  ↔  ( ( 𝑅  FrSe  𝐴  ∧  { 𝑥  ∈  𝐴  ∣  ¬  ∃ 𝑓 ( 𝑓  ∈  𝐶  ∧  dom  𝑓  =  ( { 𝑥 }  ∪   trCl ( 𝑥 ,  𝐴 ,  𝑅 ) ) ) }  ≠  ∅ )  ∧  𝑥  ∈  { 𝑥  ∈  𝐴  ∣  ¬  ∃ 𝑓 ( 𝑓  ∈  𝐶  ∧  dom  𝑓  =  ( { 𝑥 }  ∪   trCl ( 𝑥 ,  𝐴 ,  𝑅 ) ) ) }  ∧  ∀ 𝑦  ∈  { 𝑥  ∈  𝐴  ∣  ¬  ∃ 𝑓 ( 𝑓  ∈  𝐶  ∧  dom  𝑓  =  ( { 𝑥 }  ∪   trCl ( 𝑥 ,  𝐴 ,  𝑅 ) ) ) } ¬  𝑦 𝑅 𝑥 ) )  | 
						
						
							| 8 | 
							
								
							 | 
							biid | 
							⊢ ( [ 𝑦  /  𝑥 ] ( 𝑓  ∈  𝐶  ∧  dom  𝑓  =  ( { 𝑥 }  ∪   trCl ( 𝑥 ,  𝐴 ,  𝑅 ) ) )  ↔  [ 𝑦  /  𝑥 ] ( 𝑓  ∈  𝐶  ∧  dom  𝑓  =  ( { 𝑥 }  ∪   trCl ( 𝑥 ,  𝐴 ,  𝑅 ) ) ) )  | 
						
						
							| 9 | 
							
								
							 | 
							eqid | 
							⊢ { 𝑓  ∣  ∃ 𝑦  ∈   pred ( 𝑥 ,  𝐴 ,  𝑅 ) [ 𝑦  /  𝑥 ] ( 𝑓  ∈  𝐶  ∧  dom  𝑓  =  ( { 𝑥 }  ∪   trCl ( 𝑥 ,  𝐴 ,  𝑅 ) ) ) }  =  { 𝑓  ∣  ∃ 𝑦  ∈   pred ( 𝑥 ,  𝐴 ,  𝑅 ) [ 𝑦  /  𝑥 ] ( 𝑓  ∈  𝐶  ∧  dom  𝑓  =  ( { 𝑥 }  ∪   trCl ( 𝑥 ,  𝐴 ,  𝑅 ) ) ) }  | 
						
						
							| 10 | 
							
								
							 | 
							eqid | 
							⊢ ∪  { 𝑓  ∣  ∃ 𝑦  ∈   pred ( 𝑥 ,  𝐴 ,  𝑅 ) [ 𝑦  /  𝑥 ] ( 𝑓  ∈  𝐶  ∧  dom  𝑓  =  ( { 𝑥 }  ∪   trCl ( 𝑥 ,  𝐴 ,  𝑅 ) ) ) }  =  ∪  { 𝑓  ∣  ∃ 𝑦  ∈   pred ( 𝑥 ,  𝐴 ,  𝑅 ) [ 𝑦  /  𝑥 ] ( 𝑓  ∈  𝐶  ∧  dom  𝑓  =  ( { 𝑥 }  ∪   trCl ( 𝑥 ,  𝐴 ,  𝑅 ) ) ) }  | 
						
						
							| 11 | 
							
								
							 | 
							eqid | 
							⊢ 〈 𝑥 ,  ( ∪  { 𝑓  ∣  ∃ 𝑦  ∈   pred ( 𝑥 ,  𝐴 ,  𝑅 ) [ 𝑦  /  𝑥 ] ( 𝑓  ∈  𝐶  ∧  dom  𝑓  =  ( { 𝑥 }  ∪   trCl ( 𝑥 ,  𝐴 ,  𝑅 ) ) ) }  ↾   pred ( 𝑥 ,  𝐴 ,  𝑅 ) ) 〉  =  〈 𝑥 ,  ( ∪  { 𝑓  ∣  ∃ 𝑦  ∈   pred ( 𝑥 ,  𝐴 ,  𝑅 ) [ 𝑦  /  𝑥 ] ( 𝑓  ∈  𝐶  ∧  dom  𝑓  =  ( { 𝑥 }  ∪   trCl ( 𝑥 ,  𝐴 ,  𝑅 ) ) ) }  ↾   pred ( 𝑥 ,  𝐴 ,  𝑅 ) ) 〉  | 
						
						
							| 12 | 
							
								
							 | 
							eqid | 
							⊢ ( ∪  { 𝑓  ∣  ∃ 𝑦  ∈   pred ( 𝑥 ,  𝐴 ,  𝑅 ) [ 𝑦  /  𝑥 ] ( 𝑓  ∈  𝐶  ∧  dom  𝑓  =  ( { 𝑥 }  ∪   trCl ( 𝑥 ,  𝐴 ,  𝑅 ) ) ) }  ∪  { 〈 𝑥 ,  ( 𝐺 ‘ 〈 𝑥 ,  ( ∪  { 𝑓  ∣  ∃ 𝑦  ∈   pred ( 𝑥 ,  𝐴 ,  𝑅 ) [ 𝑦  /  𝑥 ] ( 𝑓  ∈  𝐶  ∧  dom  𝑓  =  ( { 𝑥 }  ∪   trCl ( 𝑥 ,  𝐴 ,  𝑅 ) ) ) }  ↾   pred ( 𝑥 ,  𝐴 ,  𝑅 ) ) 〉 ) 〉 } )  =  ( ∪  { 𝑓  ∣  ∃ 𝑦  ∈   pred ( 𝑥 ,  𝐴 ,  𝑅 ) [ 𝑦  /  𝑥 ] ( 𝑓  ∈  𝐶  ∧  dom  𝑓  =  ( { 𝑥 }  ∪   trCl ( 𝑥 ,  𝐴 ,  𝑅 ) ) ) }  ∪  { 〈 𝑥 ,  ( 𝐺 ‘ 〈 𝑥 ,  ( ∪  { 𝑓  ∣  ∃ 𝑦  ∈   pred ( 𝑥 ,  𝐴 ,  𝑅 ) [ 𝑦  /  𝑥 ] ( 𝑓  ∈  𝐶  ∧  dom  𝑓  =  ( { 𝑥 }  ∪   trCl ( 𝑥 ,  𝐴 ,  𝑅 ) ) ) }  ↾   pred ( 𝑥 ,  𝐴 ,  𝑅 ) ) 〉 ) 〉 } )  | 
						
						
							| 13 | 
							
								
							 | 
							eqid | 
							⊢ 〈 𝑧 ,  ( ( ∪  { 𝑓  ∣  ∃ 𝑦  ∈   pred ( 𝑥 ,  𝐴 ,  𝑅 ) [ 𝑦  /  𝑥 ] ( 𝑓  ∈  𝐶  ∧  dom  𝑓  =  ( { 𝑥 }  ∪   trCl ( 𝑥 ,  𝐴 ,  𝑅 ) ) ) }  ∪  { 〈 𝑥 ,  ( 𝐺 ‘ 〈 𝑥 ,  ( ∪  { 𝑓  ∣  ∃ 𝑦  ∈   pred ( 𝑥 ,  𝐴 ,  𝑅 ) [ 𝑦  /  𝑥 ] ( 𝑓  ∈  𝐶  ∧  dom  𝑓  =  ( { 𝑥 }  ∪   trCl ( 𝑥 ,  𝐴 ,  𝑅 ) ) ) }  ↾   pred ( 𝑥 ,  𝐴 ,  𝑅 ) ) 〉 ) 〉 } )  ↾   pred ( 𝑧 ,  𝐴 ,  𝑅 ) ) 〉  =  〈 𝑧 ,  ( ( ∪  { 𝑓  ∣  ∃ 𝑦  ∈   pred ( 𝑥 ,  𝐴 ,  𝑅 ) [ 𝑦  /  𝑥 ] ( 𝑓  ∈  𝐶  ∧  dom  𝑓  =  ( { 𝑥 }  ∪   trCl ( 𝑥 ,  𝐴 ,  𝑅 ) ) ) }  ∪  { 〈 𝑥 ,  ( 𝐺 ‘ 〈 𝑥 ,  ( ∪  { 𝑓  ∣  ∃ 𝑦  ∈   pred ( 𝑥 ,  𝐴 ,  𝑅 ) [ 𝑦  /  𝑥 ] ( 𝑓  ∈  𝐶  ∧  dom  𝑓  =  ( { 𝑥 }  ∪   trCl ( 𝑥 ,  𝐴 ,  𝑅 ) ) ) }  ↾   pred ( 𝑥 ,  𝐴 ,  𝑅 ) ) 〉 ) 〉 } )  ↾   pred ( 𝑧 ,  𝐴 ,  𝑅 ) ) 〉  | 
						
						
							| 14 | 
							
								
							 | 
							eqid | 
							⊢ ( { 𝑥 }  ∪   trCl ( 𝑥 ,  𝐴 ,  𝑅 ) )  =  ( { 𝑥 }  ∪   trCl ( 𝑥 ,  𝐴 ,  𝑅 ) )  | 
						
						
							| 15 | 
							
								1 2 3 4 5 6 7 8 9 10 11 12 13 14
							 | 
							bnj1312 | 
							⊢ ( 𝑅  FrSe  𝐴  →  ∀ 𝑥  ∈  𝐴 ∃ 𝑓  ∈  𝐶 dom  𝑓  =  ( { 𝑥 }  ∪   trCl ( 𝑥 ,  𝐴 ,  𝑅 ) ) )  |