| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							bnj1497.1 | 
							⊢ 𝐵  =  { 𝑑  ∣  ( 𝑑  ⊆  𝐴  ∧  ∀ 𝑥  ∈  𝑑  pred ( 𝑥 ,  𝐴 ,  𝑅 )  ⊆  𝑑 ) }  | 
						
						
							| 2 | 
							
								
							 | 
							bnj1497.2 | 
							⊢ 𝑌  =  〈 𝑥 ,  ( 𝑓  ↾   pred ( 𝑥 ,  𝐴 ,  𝑅 ) ) 〉  | 
						
						
							| 3 | 
							
								
							 | 
							bnj1497.3 | 
							⊢ 𝐶  =  { 𝑓  ∣  ∃ 𝑑  ∈  𝐵 ( 𝑓  Fn  𝑑  ∧  ∀ 𝑥  ∈  𝑑 ( 𝑓 ‘ 𝑥 )  =  ( 𝐺 ‘ 𝑌 ) ) }  | 
						
						
							| 4 | 
							
								3
							 | 
							bnj1317 | 
							⊢ ( 𝑔  ∈  𝐶  →  ∀ 𝑓 𝑔  ∈  𝐶 )  | 
						
						
							| 5 | 
							
								4
							 | 
							nf5i | 
							⊢ Ⅎ 𝑓 𝑔  ∈  𝐶  | 
						
						
							| 6 | 
							
								
							 | 
							nfv | 
							⊢ Ⅎ 𝑓 Fun  𝑔  | 
						
						
							| 7 | 
							
								5 6
							 | 
							nfim | 
							⊢ Ⅎ 𝑓 ( 𝑔  ∈  𝐶  →  Fun  𝑔 )  | 
						
						
							| 8 | 
							
								
							 | 
							eleq1w | 
							⊢ ( 𝑓  =  𝑔  →  ( 𝑓  ∈  𝐶  ↔  𝑔  ∈  𝐶 ) )  | 
						
						
							| 9 | 
							
								
							 | 
							funeq | 
							⊢ ( 𝑓  =  𝑔  →  ( Fun  𝑓  ↔  Fun  𝑔 ) )  | 
						
						
							| 10 | 
							
								8 9
							 | 
							imbi12d | 
							⊢ ( 𝑓  =  𝑔  →  ( ( 𝑓  ∈  𝐶  →  Fun  𝑓 )  ↔  ( 𝑔  ∈  𝐶  →  Fun  𝑔 ) ) )  | 
						
						
							| 11 | 
							
								3
							 | 
							bnj1436 | 
							⊢ ( 𝑓  ∈  𝐶  →  ∃ 𝑑  ∈  𝐵 ( 𝑓  Fn  𝑑  ∧  ∀ 𝑥  ∈  𝑑 ( 𝑓 ‘ 𝑥 )  =  ( 𝐺 ‘ 𝑌 ) ) )  | 
						
						
							| 12 | 
							
								11
							 | 
							bnj1299 | 
							⊢ ( 𝑓  ∈  𝐶  →  ∃ 𝑑  ∈  𝐵 𝑓  Fn  𝑑 )  | 
						
						
							| 13 | 
							
								
							 | 
							fnfun | 
							⊢ ( 𝑓  Fn  𝑑  →  Fun  𝑓 )  | 
						
						
							| 14 | 
							
								12 13
							 | 
							bnj31 | 
							⊢ ( 𝑓  ∈  𝐶  →  ∃ 𝑑  ∈  𝐵 Fun  𝑓 )  | 
						
						
							| 15 | 
							
								14
							 | 
							bnj1265 | 
							⊢ ( 𝑓  ∈  𝐶  →  Fun  𝑓 )  | 
						
						
							| 16 | 
							
								7 10 15
							 | 
							chvarfv | 
							⊢ ( 𝑔  ∈  𝐶  →  Fun  𝑔 )  | 
						
						
							| 17 | 
							
								16
							 | 
							rgen | 
							⊢ ∀ 𝑔  ∈  𝐶 Fun  𝑔  |