Step |
Hyp |
Ref |
Expression |
1 |
|
bnj1498.1 |
⊢ 𝐵 = { 𝑑 ∣ ( 𝑑 ⊆ 𝐴 ∧ ∀ 𝑥 ∈ 𝑑 pred ( 𝑥 , 𝐴 , 𝑅 ) ⊆ 𝑑 ) } |
2 |
|
bnj1498.2 |
⊢ 𝑌 = 〈 𝑥 , ( 𝑓 ↾ pred ( 𝑥 , 𝐴 , 𝑅 ) ) 〉 |
3 |
|
bnj1498.3 |
⊢ 𝐶 = { 𝑓 ∣ ∃ 𝑑 ∈ 𝐵 ( 𝑓 Fn 𝑑 ∧ ∀ 𝑥 ∈ 𝑑 ( 𝑓 ‘ 𝑥 ) = ( 𝐺 ‘ 𝑌 ) ) } |
4 |
|
bnj1498.4 |
⊢ 𝐹 = ∪ 𝐶 |
5 |
|
eliun |
⊢ ( 𝑧 ∈ ∪ 𝑓 ∈ 𝐶 dom 𝑓 ↔ ∃ 𝑓 ∈ 𝐶 𝑧 ∈ dom 𝑓 ) |
6 |
3
|
bnj1436 |
⊢ ( 𝑓 ∈ 𝐶 → ∃ 𝑑 ∈ 𝐵 ( 𝑓 Fn 𝑑 ∧ ∀ 𝑥 ∈ 𝑑 ( 𝑓 ‘ 𝑥 ) = ( 𝐺 ‘ 𝑌 ) ) ) |
7 |
6
|
bnj1299 |
⊢ ( 𝑓 ∈ 𝐶 → ∃ 𝑑 ∈ 𝐵 𝑓 Fn 𝑑 ) |
8 |
|
fndm |
⊢ ( 𝑓 Fn 𝑑 → dom 𝑓 = 𝑑 ) |
9 |
7 8
|
bnj31 |
⊢ ( 𝑓 ∈ 𝐶 → ∃ 𝑑 ∈ 𝐵 dom 𝑓 = 𝑑 ) |
10 |
9
|
bnj1196 |
⊢ ( 𝑓 ∈ 𝐶 → ∃ 𝑑 ( 𝑑 ∈ 𝐵 ∧ dom 𝑓 = 𝑑 ) ) |
11 |
1
|
bnj1436 |
⊢ ( 𝑑 ∈ 𝐵 → ( 𝑑 ⊆ 𝐴 ∧ ∀ 𝑥 ∈ 𝑑 pred ( 𝑥 , 𝐴 , 𝑅 ) ⊆ 𝑑 ) ) |
12 |
11
|
simpld |
⊢ ( 𝑑 ∈ 𝐵 → 𝑑 ⊆ 𝐴 ) |
13 |
12
|
anim1i |
⊢ ( ( 𝑑 ∈ 𝐵 ∧ dom 𝑓 = 𝑑 ) → ( 𝑑 ⊆ 𝐴 ∧ dom 𝑓 = 𝑑 ) ) |
14 |
10 13
|
bnj593 |
⊢ ( 𝑓 ∈ 𝐶 → ∃ 𝑑 ( 𝑑 ⊆ 𝐴 ∧ dom 𝑓 = 𝑑 ) ) |
15 |
|
sseq1 |
⊢ ( dom 𝑓 = 𝑑 → ( dom 𝑓 ⊆ 𝐴 ↔ 𝑑 ⊆ 𝐴 ) ) |
16 |
15
|
biimparc |
⊢ ( ( 𝑑 ⊆ 𝐴 ∧ dom 𝑓 = 𝑑 ) → dom 𝑓 ⊆ 𝐴 ) |
17 |
14 16
|
bnj593 |
⊢ ( 𝑓 ∈ 𝐶 → ∃ 𝑑 dom 𝑓 ⊆ 𝐴 ) |
18 |
17
|
bnj937 |
⊢ ( 𝑓 ∈ 𝐶 → dom 𝑓 ⊆ 𝐴 ) |
19 |
18
|
sselda |
⊢ ( ( 𝑓 ∈ 𝐶 ∧ 𝑧 ∈ dom 𝑓 ) → 𝑧 ∈ 𝐴 ) |
20 |
19
|
rexlimiva |
⊢ ( ∃ 𝑓 ∈ 𝐶 𝑧 ∈ dom 𝑓 → 𝑧 ∈ 𝐴 ) |
21 |
5 20
|
sylbi |
⊢ ( 𝑧 ∈ ∪ 𝑓 ∈ 𝐶 dom 𝑓 → 𝑧 ∈ 𝐴 ) |
22 |
3
|
bnj1317 |
⊢ ( 𝑤 ∈ 𝐶 → ∀ 𝑓 𝑤 ∈ 𝐶 ) |
23 |
22
|
bnj1400 |
⊢ dom ∪ 𝐶 = ∪ 𝑓 ∈ 𝐶 dom 𝑓 |
24 |
21 23
|
eleq2s |
⊢ ( 𝑧 ∈ dom ∪ 𝐶 → 𝑧 ∈ 𝐴 ) |
25 |
4
|
dmeqi |
⊢ dom 𝐹 = dom ∪ 𝐶 |
26 |
24 25
|
eleq2s |
⊢ ( 𝑧 ∈ dom 𝐹 → 𝑧 ∈ 𝐴 ) |
27 |
26
|
ssriv |
⊢ dom 𝐹 ⊆ 𝐴 |
28 |
27
|
a1i |
⊢ ( 𝑅 FrSe 𝐴 → dom 𝐹 ⊆ 𝐴 ) |
29 |
1 2 3
|
bnj1493 |
⊢ ( 𝑅 FrSe 𝐴 → ∀ 𝑥 ∈ 𝐴 ∃ 𝑓 ∈ 𝐶 dom 𝑓 = ( { 𝑥 } ∪ trCl ( 𝑥 , 𝐴 , 𝑅 ) ) ) |
30 |
|
vsnid |
⊢ 𝑥 ∈ { 𝑥 } |
31 |
|
elun1 |
⊢ ( 𝑥 ∈ { 𝑥 } → 𝑥 ∈ ( { 𝑥 } ∪ trCl ( 𝑥 , 𝐴 , 𝑅 ) ) ) |
32 |
30 31
|
ax-mp |
⊢ 𝑥 ∈ ( { 𝑥 } ∪ trCl ( 𝑥 , 𝐴 , 𝑅 ) ) |
33 |
|
eleq2 |
⊢ ( dom 𝑓 = ( { 𝑥 } ∪ trCl ( 𝑥 , 𝐴 , 𝑅 ) ) → ( 𝑥 ∈ dom 𝑓 ↔ 𝑥 ∈ ( { 𝑥 } ∪ trCl ( 𝑥 , 𝐴 , 𝑅 ) ) ) ) |
34 |
32 33
|
mpbiri |
⊢ ( dom 𝑓 = ( { 𝑥 } ∪ trCl ( 𝑥 , 𝐴 , 𝑅 ) ) → 𝑥 ∈ dom 𝑓 ) |
35 |
34
|
reximi |
⊢ ( ∃ 𝑓 ∈ 𝐶 dom 𝑓 = ( { 𝑥 } ∪ trCl ( 𝑥 , 𝐴 , 𝑅 ) ) → ∃ 𝑓 ∈ 𝐶 𝑥 ∈ dom 𝑓 ) |
36 |
35
|
ralimi |
⊢ ( ∀ 𝑥 ∈ 𝐴 ∃ 𝑓 ∈ 𝐶 dom 𝑓 = ( { 𝑥 } ∪ trCl ( 𝑥 , 𝐴 , 𝑅 ) ) → ∀ 𝑥 ∈ 𝐴 ∃ 𝑓 ∈ 𝐶 𝑥 ∈ dom 𝑓 ) |
37 |
29 36
|
syl |
⊢ ( 𝑅 FrSe 𝐴 → ∀ 𝑥 ∈ 𝐴 ∃ 𝑓 ∈ 𝐶 𝑥 ∈ dom 𝑓 ) |
38 |
|
eliun |
⊢ ( 𝑥 ∈ ∪ 𝑓 ∈ 𝐶 dom 𝑓 ↔ ∃ 𝑓 ∈ 𝐶 𝑥 ∈ dom 𝑓 ) |
39 |
38
|
ralbii |
⊢ ( ∀ 𝑥 ∈ 𝐴 𝑥 ∈ ∪ 𝑓 ∈ 𝐶 dom 𝑓 ↔ ∀ 𝑥 ∈ 𝐴 ∃ 𝑓 ∈ 𝐶 𝑥 ∈ dom 𝑓 ) |
40 |
37 39
|
sylibr |
⊢ ( 𝑅 FrSe 𝐴 → ∀ 𝑥 ∈ 𝐴 𝑥 ∈ ∪ 𝑓 ∈ 𝐶 dom 𝑓 ) |
41 |
|
nfcv |
⊢ Ⅎ 𝑥 𝐴 |
42 |
1
|
bnj1309 |
⊢ ( 𝑡 ∈ 𝐵 → ∀ 𝑥 𝑡 ∈ 𝐵 ) |
43 |
3 42
|
bnj1307 |
⊢ ( 𝑡 ∈ 𝐶 → ∀ 𝑥 𝑡 ∈ 𝐶 ) |
44 |
43
|
nfcii |
⊢ Ⅎ 𝑥 𝐶 |
45 |
|
nfcv |
⊢ Ⅎ 𝑥 dom 𝑓 |
46 |
44 45
|
nfiun |
⊢ Ⅎ 𝑥 ∪ 𝑓 ∈ 𝐶 dom 𝑓 |
47 |
41 46
|
dfss3f |
⊢ ( 𝐴 ⊆ ∪ 𝑓 ∈ 𝐶 dom 𝑓 ↔ ∀ 𝑥 ∈ 𝐴 𝑥 ∈ ∪ 𝑓 ∈ 𝐶 dom 𝑓 ) |
48 |
40 47
|
sylibr |
⊢ ( 𝑅 FrSe 𝐴 → 𝐴 ⊆ ∪ 𝑓 ∈ 𝐶 dom 𝑓 ) |
49 |
48 23
|
sseqtrrdi |
⊢ ( 𝑅 FrSe 𝐴 → 𝐴 ⊆ dom ∪ 𝐶 ) |
50 |
49 25
|
sseqtrrdi |
⊢ ( 𝑅 FrSe 𝐴 → 𝐴 ⊆ dom 𝐹 ) |
51 |
28 50
|
eqssd |
⊢ ( 𝑅 FrSe 𝐴 → dom 𝐹 = 𝐴 ) |