Metamath Proof Explorer


Theorem bnj1498

Description: Technical lemma for bnj60 . This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (New usage is discouraged.)

Ref Expression
Hypotheses bnj1498.1 𝐵 = { 𝑑 ∣ ( 𝑑𝐴 ∧ ∀ 𝑥𝑑 pred ( 𝑥 , 𝐴 , 𝑅 ) ⊆ 𝑑 ) }
bnj1498.2 𝑌 = ⟨ 𝑥 , ( 𝑓 ↾ pred ( 𝑥 , 𝐴 , 𝑅 ) ) ⟩
bnj1498.3 𝐶 = { 𝑓 ∣ ∃ 𝑑𝐵 ( 𝑓 Fn 𝑑 ∧ ∀ 𝑥𝑑 ( 𝑓𝑥 ) = ( 𝐺𝑌 ) ) }
bnj1498.4 𝐹 = 𝐶
Assertion bnj1498 ( 𝑅 FrSe 𝐴 → dom 𝐹 = 𝐴 )

Proof

Step Hyp Ref Expression
1 bnj1498.1 𝐵 = { 𝑑 ∣ ( 𝑑𝐴 ∧ ∀ 𝑥𝑑 pred ( 𝑥 , 𝐴 , 𝑅 ) ⊆ 𝑑 ) }
2 bnj1498.2 𝑌 = ⟨ 𝑥 , ( 𝑓 ↾ pred ( 𝑥 , 𝐴 , 𝑅 ) ) ⟩
3 bnj1498.3 𝐶 = { 𝑓 ∣ ∃ 𝑑𝐵 ( 𝑓 Fn 𝑑 ∧ ∀ 𝑥𝑑 ( 𝑓𝑥 ) = ( 𝐺𝑌 ) ) }
4 bnj1498.4 𝐹 = 𝐶
5 eliun ( 𝑧 𝑓𝐶 dom 𝑓 ↔ ∃ 𝑓𝐶 𝑧 ∈ dom 𝑓 )
6 3 bnj1436 ( 𝑓𝐶 → ∃ 𝑑𝐵 ( 𝑓 Fn 𝑑 ∧ ∀ 𝑥𝑑 ( 𝑓𝑥 ) = ( 𝐺𝑌 ) ) )
7 6 bnj1299 ( 𝑓𝐶 → ∃ 𝑑𝐵 𝑓 Fn 𝑑 )
8 fndm ( 𝑓 Fn 𝑑 → dom 𝑓 = 𝑑 )
9 7 8 bnj31 ( 𝑓𝐶 → ∃ 𝑑𝐵 dom 𝑓 = 𝑑 )
10 9 bnj1196 ( 𝑓𝐶 → ∃ 𝑑 ( 𝑑𝐵 ∧ dom 𝑓 = 𝑑 ) )
11 1 bnj1436 ( 𝑑𝐵 → ( 𝑑𝐴 ∧ ∀ 𝑥𝑑 pred ( 𝑥 , 𝐴 , 𝑅 ) ⊆ 𝑑 ) )
12 11 simpld ( 𝑑𝐵𝑑𝐴 )
13 12 anim1i ( ( 𝑑𝐵 ∧ dom 𝑓 = 𝑑 ) → ( 𝑑𝐴 ∧ dom 𝑓 = 𝑑 ) )
14 10 13 bnj593 ( 𝑓𝐶 → ∃ 𝑑 ( 𝑑𝐴 ∧ dom 𝑓 = 𝑑 ) )
15 sseq1 ( dom 𝑓 = 𝑑 → ( dom 𝑓𝐴𝑑𝐴 ) )
16 15 biimparc ( ( 𝑑𝐴 ∧ dom 𝑓 = 𝑑 ) → dom 𝑓𝐴 )
17 14 16 bnj593 ( 𝑓𝐶 → ∃ 𝑑 dom 𝑓𝐴 )
18 17 bnj937 ( 𝑓𝐶 → dom 𝑓𝐴 )
19 18 sselda ( ( 𝑓𝐶𝑧 ∈ dom 𝑓 ) → 𝑧𝐴 )
20 19 rexlimiva ( ∃ 𝑓𝐶 𝑧 ∈ dom 𝑓𝑧𝐴 )
21 5 20 sylbi ( 𝑧 𝑓𝐶 dom 𝑓𝑧𝐴 )
22 3 bnj1317 ( 𝑤𝐶 → ∀ 𝑓 𝑤𝐶 )
23 22 bnj1400 dom 𝐶 = 𝑓𝐶 dom 𝑓
24 21 23 eleq2s ( 𝑧 ∈ dom 𝐶𝑧𝐴 )
25 4 dmeqi dom 𝐹 = dom 𝐶
26 24 25 eleq2s ( 𝑧 ∈ dom 𝐹𝑧𝐴 )
27 26 ssriv dom 𝐹𝐴
28 27 a1i ( 𝑅 FrSe 𝐴 → dom 𝐹𝐴 )
29 1 2 3 bnj1493 ( 𝑅 FrSe 𝐴 → ∀ 𝑥𝐴𝑓𝐶 dom 𝑓 = ( { 𝑥 } ∪ trCl ( 𝑥 , 𝐴 , 𝑅 ) ) )
30 vsnid 𝑥 ∈ { 𝑥 }
31 elun1 ( 𝑥 ∈ { 𝑥 } → 𝑥 ∈ ( { 𝑥 } ∪ trCl ( 𝑥 , 𝐴 , 𝑅 ) ) )
32 30 31 ax-mp 𝑥 ∈ ( { 𝑥 } ∪ trCl ( 𝑥 , 𝐴 , 𝑅 ) )
33 eleq2 ( dom 𝑓 = ( { 𝑥 } ∪ trCl ( 𝑥 , 𝐴 , 𝑅 ) ) → ( 𝑥 ∈ dom 𝑓𝑥 ∈ ( { 𝑥 } ∪ trCl ( 𝑥 , 𝐴 , 𝑅 ) ) ) )
34 32 33 mpbiri ( dom 𝑓 = ( { 𝑥 } ∪ trCl ( 𝑥 , 𝐴 , 𝑅 ) ) → 𝑥 ∈ dom 𝑓 )
35 34 reximi ( ∃ 𝑓𝐶 dom 𝑓 = ( { 𝑥 } ∪ trCl ( 𝑥 , 𝐴 , 𝑅 ) ) → ∃ 𝑓𝐶 𝑥 ∈ dom 𝑓 )
36 35 ralimi ( ∀ 𝑥𝐴𝑓𝐶 dom 𝑓 = ( { 𝑥 } ∪ trCl ( 𝑥 , 𝐴 , 𝑅 ) ) → ∀ 𝑥𝐴𝑓𝐶 𝑥 ∈ dom 𝑓 )
37 29 36 syl ( 𝑅 FrSe 𝐴 → ∀ 𝑥𝐴𝑓𝐶 𝑥 ∈ dom 𝑓 )
38 eliun ( 𝑥 𝑓𝐶 dom 𝑓 ↔ ∃ 𝑓𝐶 𝑥 ∈ dom 𝑓 )
39 38 ralbii ( ∀ 𝑥𝐴 𝑥 𝑓𝐶 dom 𝑓 ↔ ∀ 𝑥𝐴𝑓𝐶 𝑥 ∈ dom 𝑓 )
40 37 39 sylibr ( 𝑅 FrSe 𝐴 → ∀ 𝑥𝐴 𝑥 𝑓𝐶 dom 𝑓 )
41 nfcv 𝑥 𝐴
42 1 bnj1309 ( 𝑡𝐵 → ∀ 𝑥 𝑡𝐵 )
43 3 42 bnj1307 ( 𝑡𝐶 → ∀ 𝑥 𝑡𝐶 )
44 43 nfcii 𝑥 𝐶
45 nfcv 𝑥 dom 𝑓
46 44 45 nfiun 𝑥 𝑓𝐶 dom 𝑓
47 41 46 dfss3f ( 𝐴 𝑓𝐶 dom 𝑓 ↔ ∀ 𝑥𝐴 𝑥 𝑓𝐶 dom 𝑓 )
48 40 47 sylibr ( 𝑅 FrSe 𝐴𝐴 𝑓𝐶 dom 𝑓 )
49 48 23 sseqtrrdi ( 𝑅 FrSe 𝐴𝐴 ⊆ dom 𝐶 )
50 49 25 sseqtrrdi ( 𝑅 FrSe 𝐴𝐴 ⊆ dom 𝐹 )
51 28 50 eqssd ( 𝑅 FrSe 𝐴 → dom 𝐹 = 𝐴 )