| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							bnj1500.1 | 
							⊢ 𝐵  =  { 𝑑  ∣  ( 𝑑  ⊆  𝐴  ∧  ∀ 𝑥  ∈  𝑑  pred ( 𝑥 ,  𝐴 ,  𝑅 )  ⊆  𝑑 ) }  | 
						
						
							| 2 | 
							
								
							 | 
							bnj1500.2 | 
							⊢ 𝑌  =  〈 𝑥 ,  ( 𝑓  ↾   pred ( 𝑥 ,  𝐴 ,  𝑅 ) ) 〉  | 
						
						
							| 3 | 
							
								
							 | 
							bnj1500.3 | 
							⊢ 𝐶  =  { 𝑓  ∣  ∃ 𝑑  ∈  𝐵 ( 𝑓  Fn  𝑑  ∧  ∀ 𝑥  ∈  𝑑 ( 𝑓 ‘ 𝑥 )  =  ( 𝐺 ‘ 𝑌 ) ) }  | 
						
						
							| 4 | 
							
								
							 | 
							bnj1500.4 | 
							⊢ 𝐹  =  ∪  𝐶  | 
						
						
							| 5 | 
							
								
							 | 
							biid | 
							⊢ ( ( 𝑅  FrSe  𝐴  ∧  𝑥  ∈  𝐴 )  ↔  ( 𝑅  FrSe  𝐴  ∧  𝑥  ∈  𝐴 ) )  | 
						
						
							| 6 | 
							
								
							 | 
							biid | 
							⊢ ( ( ( 𝑅  FrSe  𝐴  ∧  𝑥  ∈  𝐴 )  ∧  𝑓  ∈  𝐶  ∧  𝑥  ∈  dom  𝑓 )  ↔  ( ( 𝑅  FrSe  𝐴  ∧  𝑥  ∈  𝐴 )  ∧  𝑓  ∈  𝐶  ∧  𝑥  ∈  dom  𝑓 ) )  | 
						
						
							| 7 | 
							
								
							 | 
							biid | 
							⊢ ( ( ( ( 𝑅  FrSe  𝐴  ∧  𝑥  ∈  𝐴 )  ∧  𝑓  ∈  𝐶  ∧  𝑥  ∈  dom  𝑓 )  ∧  𝑑  ∈  𝐵  ∧  dom  𝑓  =  𝑑 )  ↔  ( ( ( 𝑅  FrSe  𝐴  ∧  𝑥  ∈  𝐴 )  ∧  𝑓  ∈  𝐶  ∧  𝑥  ∈  dom  𝑓 )  ∧  𝑑  ∈  𝐵  ∧  dom  𝑓  =  𝑑 ) )  | 
						
						
							| 8 | 
							
								1 2 3 4 5 6 7
							 | 
							bnj1501 | 
							⊢ ( 𝑅  FrSe  𝐴  →  ∀ 𝑥  ∈  𝐴 ( 𝐹 ‘ 𝑥 )  =  ( 𝐺 ‘ 〈 𝑥 ,  ( 𝐹  ↾   pred ( 𝑥 ,  𝐴 ,  𝑅 ) ) 〉 ) )  |