Step |
Hyp |
Ref |
Expression |
1 |
|
bnj1501.1 |
⊢ 𝐵 = { 𝑑 ∣ ( 𝑑 ⊆ 𝐴 ∧ ∀ 𝑥 ∈ 𝑑 pred ( 𝑥 , 𝐴 , 𝑅 ) ⊆ 𝑑 ) } |
2 |
|
bnj1501.2 |
⊢ 𝑌 = 〈 𝑥 , ( 𝑓 ↾ pred ( 𝑥 , 𝐴 , 𝑅 ) ) 〉 |
3 |
|
bnj1501.3 |
⊢ 𝐶 = { 𝑓 ∣ ∃ 𝑑 ∈ 𝐵 ( 𝑓 Fn 𝑑 ∧ ∀ 𝑥 ∈ 𝑑 ( 𝑓 ‘ 𝑥 ) = ( 𝐺 ‘ 𝑌 ) ) } |
4 |
|
bnj1501.4 |
⊢ 𝐹 = ∪ 𝐶 |
5 |
|
bnj1501.5 |
⊢ ( 𝜑 ↔ ( 𝑅 FrSe 𝐴 ∧ 𝑥 ∈ 𝐴 ) ) |
6 |
|
bnj1501.6 |
⊢ ( 𝜓 ↔ ( 𝜑 ∧ 𝑓 ∈ 𝐶 ∧ 𝑥 ∈ dom 𝑓 ) ) |
7 |
|
bnj1501.7 |
⊢ ( 𝜒 ↔ ( 𝜓 ∧ 𝑑 ∈ 𝐵 ∧ dom 𝑓 = 𝑑 ) ) |
8 |
5
|
simprbi |
⊢ ( 𝜑 → 𝑥 ∈ 𝐴 ) |
9 |
1 2 3 4
|
bnj60 |
⊢ ( 𝑅 FrSe 𝐴 → 𝐹 Fn 𝐴 ) |
10 |
9
|
fndmd |
⊢ ( 𝑅 FrSe 𝐴 → dom 𝐹 = 𝐴 ) |
11 |
5 10
|
bnj832 |
⊢ ( 𝜑 → dom 𝐹 = 𝐴 ) |
12 |
8 11
|
eleqtrrd |
⊢ ( 𝜑 → 𝑥 ∈ dom 𝐹 ) |
13 |
4
|
dmeqi |
⊢ dom 𝐹 = dom ∪ 𝐶 |
14 |
3
|
bnj1317 |
⊢ ( 𝑤 ∈ 𝐶 → ∀ 𝑓 𝑤 ∈ 𝐶 ) |
15 |
14
|
bnj1400 |
⊢ dom ∪ 𝐶 = ∪ 𝑓 ∈ 𝐶 dom 𝑓 |
16 |
13 15
|
eqtri |
⊢ dom 𝐹 = ∪ 𝑓 ∈ 𝐶 dom 𝑓 |
17 |
12 16
|
eleqtrdi |
⊢ ( 𝜑 → 𝑥 ∈ ∪ 𝑓 ∈ 𝐶 dom 𝑓 ) |
18 |
17
|
bnj1405 |
⊢ ( 𝜑 → ∃ 𝑓 ∈ 𝐶 𝑥 ∈ dom 𝑓 ) |
19 |
18 6
|
bnj1209 |
⊢ ( 𝜑 → ∃ 𝑓 𝜓 ) |
20 |
3
|
bnj1436 |
⊢ ( 𝑓 ∈ 𝐶 → ∃ 𝑑 ∈ 𝐵 ( 𝑓 Fn 𝑑 ∧ ∀ 𝑥 ∈ 𝑑 ( 𝑓 ‘ 𝑥 ) = ( 𝐺 ‘ 𝑌 ) ) ) |
21 |
20
|
bnj1299 |
⊢ ( 𝑓 ∈ 𝐶 → ∃ 𝑑 ∈ 𝐵 𝑓 Fn 𝑑 ) |
22 |
|
fndm |
⊢ ( 𝑓 Fn 𝑑 → dom 𝑓 = 𝑑 ) |
23 |
21 22
|
bnj31 |
⊢ ( 𝑓 ∈ 𝐶 → ∃ 𝑑 ∈ 𝐵 dom 𝑓 = 𝑑 ) |
24 |
6 23
|
bnj836 |
⊢ ( 𝜓 → ∃ 𝑑 ∈ 𝐵 dom 𝑓 = 𝑑 ) |
25 |
1 2 3 4 5 6
|
bnj1518 |
⊢ ( 𝜓 → ∀ 𝑑 𝜓 ) |
26 |
24 7 25
|
bnj1521 |
⊢ ( 𝜓 → ∃ 𝑑 𝜒 ) |
27 |
9
|
fnfund |
⊢ ( 𝑅 FrSe 𝐴 → Fun 𝐹 ) |
28 |
5 27
|
bnj832 |
⊢ ( 𝜑 → Fun 𝐹 ) |
29 |
6 28
|
bnj835 |
⊢ ( 𝜓 → Fun 𝐹 ) |
30 |
|
elssuni |
⊢ ( 𝑓 ∈ 𝐶 → 𝑓 ⊆ ∪ 𝐶 ) |
31 |
30 4
|
sseqtrrdi |
⊢ ( 𝑓 ∈ 𝐶 → 𝑓 ⊆ 𝐹 ) |
32 |
6 31
|
bnj836 |
⊢ ( 𝜓 → 𝑓 ⊆ 𝐹 ) |
33 |
6
|
simp3bi |
⊢ ( 𝜓 → 𝑥 ∈ dom 𝑓 ) |
34 |
29 32 33
|
bnj1502 |
⊢ ( 𝜓 → ( 𝐹 ‘ 𝑥 ) = ( 𝑓 ‘ 𝑥 ) ) |
35 |
1 2 3
|
bnj1514 |
⊢ ( 𝑓 ∈ 𝐶 → ∀ 𝑥 ∈ dom 𝑓 ( 𝑓 ‘ 𝑥 ) = ( 𝐺 ‘ 𝑌 ) ) |
36 |
6 35
|
bnj836 |
⊢ ( 𝜓 → ∀ 𝑥 ∈ dom 𝑓 ( 𝑓 ‘ 𝑥 ) = ( 𝐺 ‘ 𝑌 ) ) |
37 |
36 33
|
bnj1294 |
⊢ ( 𝜓 → ( 𝑓 ‘ 𝑥 ) = ( 𝐺 ‘ 𝑌 ) ) |
38 |
34 37
|
eqtrd |
⊢ ( 𝜓 → ( 𝐹 ‘ 𝑥 ) = ( 𝐺 ‘ 𝑌 ) ) |
39 |
7 38
|
bnj835 |
⊢ ( 𝜒 → ( 𝐹 ‘ 𝑥 ) = ( 𝐺 ‘ 𝑌 ) ) |
40 |
7 29
|
bnj835 |
⊢ ( 𝜒 → Fun 𝐹 ) |
41 |
7 32
|
bnj835 |
⊢ ( 𝜒 → 𝑓 ⊆ 𝐹 ) |
42 |
1
|
bnj1517 |
⊢ ( 𝑑 ∈ 𝐵 → ∀ 𝑥 ∈ 𝑑 pred ( 𝑥 , 𝐴 , 𝑅 ) ⊆ 𝑑 ) |
43 |
7 42
|
bnj836 |
⊢ ( 𝜒 → ∀ 𝑥 ∈ 𝑑 pred ( 𝑥 , 𝐴 , 𝑅 ) ⊆ 𝑑 ) |
44 |
7 33
|
bnj835 |
⊢ ( 𝜒 → 𝑥 ∈ dom 𝑓 ) |
45 |
7
|
simp3bi |
⊢ ( 𝜒 → dom 𝑓 = 𝑑 ) |
46 |
44 45
|
eleqtrd |
⊢ ( 𝜒 → 𝑥 ∈ 𝑑 ) |
47 |
43 46
|
bnj1294 |
⊢ ( 𝜒 → pred ( 𝑥 , 𝐴 , 𝑅 ) ⊆ 𝑑 ) |
48 |
47 45
|
sseqtrrd |
⊢ ( 𝜒 → pred ( 𝑥 , 𝐴 , 𝑅 ) ⊆ dom 𝑓 ) |
49 |
40 41 48
|
bnj1503 |
⊢ ( 𝜒 → ( 𝐹 ↾ pred ( 𝑥 , 𝐴 , 𝑅 ) ) = ( 𝑓 ↾ pred ( 𝑥 , 𝐴 , 𝑅 ) ) ) |
50 |
49
|
opeq2d |
⊢ ( 𝜒 → 〈 𝑥 , ( 𝐹 ↾ pred ( 𝑥 , 𝐴 , 𝑅 ) ) 〉 = 〈 𝑥 , ( 𝑓 ↾ pred ( 𝑥 , 𝐴 , 𝑅 ) ) 〉 ) |
51 |
50 2
|
eqtr4di |
⊢ ( 𝜒 → 〈 𝑥 , ( 𝐹 ↾ pred ( 𝑥 , 𝐴 , 𝑅 ) ) 〉 = 𝑌 ) |
52 |
51
|
fveq2d |
⊢ ( 𝜒 → ( 𝐺 ‘ 〈 𝑥 , ( 𝐹 ↾ pred ( 𝑥 , 𝐴 , 𝑅 ) ) 〉 ) = ( 𝐺 ‘ 𝑌 ) ) |
53 |
39 52
|
eqtr4d |
⊢ ( 𝜒 → ( 𝐹 ‘ 𝑥 ) = ( 𝐺 ‘ 〈 𝑥 , ( 𝐹 ↾ pred ( 𝑥 , 𝐴 , 𝑅 ) ) 〉 ) ) |
54 |
26 53
|
bnj593 |
⊢ ( 𝜓 → ∃ 𝑑 ( 𝐹 ‘ 𝑥 ) = ( 𝐺 ‘ 〈 𝑥 , ( 𝐹 ↾ pred ( 𝑥 , 𝐴 , 𝑅 ) ) 〉 ) ) |
55 |
1 2 3 4
|
bnj1519 |
⊢ ( ( 𝐹 ‘ 𝑥 ) = ( 𝐺 ‘ 〈 𝑥 , ( 𝐹 ↾ pred ( 𝑥 , 𝐴 , 𝑅 ) ) 〉 ) → ∀ 𝑑 ( 𝐹 ‘ 𝑥 ) = ( 𝐺 ‘ 〈 𝑥 , ( 𝐹 ↾ pred ( 𝑥 , 𝐴 , 𝑅 ) ) 〉 ) ) |
56 |
54 55
|
bnj1397 |
⊢ ( 𝜓 → ( 𝐹 ‘ 𝑥 ) = ( 𝐺 ‘ 〈 𝑥 , ( 𝐹 ↾ pred ( 𝑥 , 𝐴 , 𝑅 ) ) 〉 ) ) |
57 |
19 56
|
bnj593 |
⊢ ( 𝜑 → ∃ 𝑓 ( 𝐹 ‘ 𝑥 ) = ( 𝐺 ‘ 〈 𝑥 , ( 𝐹 ↾ pred ( 𝑥 , 𝐴 , 𝑅 ) ) 〉 ) ) |
58 |
1 2 3 4
|
bnj1520 |
⊢ ( ( 𝐹 ‘ 𝑥 ) = ( 𝐺 ‘ 〈 𝑥 , ( 𝐹 ↾ pred ( 𝑥 , 𝐴 , 𝑅 ) ) 〉 ) → ∀ 𝑓 ( 𝐹 ‘ 𝑥 ) = ( 𝐺 ‘ 〈 𝑥 , ( 𝐹 ↾ pred ( 𝑥 , 𝐴 , 𝑅 ) ) 〉 ) ) |
59 |
57 58
|
bnj1397 |
⊢ ( 𝜑 → ( 𝐹 ‘ 𝑥 ) = ( 𝐺 ‘ 〈 𝑥 , ( 𝐹 ↾ pred ( 𝑥 , 𝐴 , 𝑅 ) ) 〉 ) ) |
60 |
5 59
|
bnj1459 |
⊢ ( 𝑅 FrSe 𝐴 → ∀ 𝑥 ∈ 𝐴 ( 𝐹 ‘ 𝑥 ) = ( 𝐺 ‘ 〈 𝑥 , ( 𝐹 ↾ pred ( 𝑥 , 𝐴 , 𝑅 ) ) 〉 ) ) |