Metamath Proof Explorer


Theorem bnj1503

Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (New usage is discouraged.)

Ref Expression
Hypotheses bnj1503.1 ( 𝜑 → Fun 𝐹 )
bnj1503.2 ( 𝜑𝐺𝐹 )
bnj1503.3 ( 𝜑𝐴 ⊆ dom 𝐺 )
Assertion bnj1503 ( 𝜑 → ( 𝐹𝐴 ) = ( 𝐺𝐴 ) )

Proof

Step Hyp Ref Expression
1 bnj1503.1 ( 𝜑 → Fun 𝐹 )
2 bnj1503.2 ( 𝜑𝐺𝐹 )
3 bnj1503.3 ( 𝜑𝐴 ⊆ dom 𝐺 )
4 fun2ssres ( ( Fun 𝐹𝐺𝐹𝐴 ⊆ dom 𝐺 ) → ( 𝐹𝐴 ) = ( 𝐺𝐴 ) )
5 1 2 3 4 syl3anc ( 𝜑 → ( 𝐹𝐴 ) = ( 𝐺𝐴 ) )