Step |
Hyp |
Ref |
Expression |
1 |
|
bnj151.1 |
⊢ ( 𝜑 ↔ ( 𝑓 ‘ ∅ ) = pred ( 𝑥 , 𝐴 , 𝑅 ) ) |
2 |
|
bnj151.2 |
⊢ ( 𝜓 ↔ ∀ 𝑖 ∈ ω ( suc 𝑖 ∈ 𝑛 → ( 𝑓 ‘ suc 𝑖 ) = ∪ 𝑦 ∈ ( 𝑓 ‘ 𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) ) |
3 |
|
bnj151.3 |
⊢ 𝐷 = ( ω ∖ { ∅ } ) |
4 |
|
bnj151.4 |
⊢ ( 𝜃 ↔ ( ( 𝑅 FrSe 𝐴 ∧ 𝑥 ∈ 𝐴 ) → ∃! 𝑓 ( 𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓 ) ) ) |
5 |
|
bnj151.5 |
⊢ ( 𝜏 ↔ ∀ 𝑚 ∈ 𝐷 ( 𝑚 E 𝑛 → [ 𝑚 / 𝑛 ] 𝜃 ) ) |
6 |
|
bnj151.6 |
⊢ ( 𝜁 ↔ ( ( 𝑅 FrSe 𝐴 ∧ 𝑥 ∈ 𝐴 ) → ( 𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓 ) ) ) |
7 |
|
bnj151.7 |
⊢ ( 𝜑′ ↔ [ 1o / 𝑛 ] 𝜑 ) |
8 |
|
bnj151.8 |
⊢ ( 𝜓′ ↔ [ 1o / 𝑛 ] 𝜓 ) |
9 |
|
bnj151.9 |
⊢ ( 𝜃′ ↔ [ 1o / 𝑛 ] 𝜃 ) |
10 |
|
bnj151.10 |
⊢ ( 𝜃0 ↔ ( ( 𝑅 FrSe 𝐴 ∧ 𝑥 ∈ 𝐴 ) → ∃ 𝑓 ( 𝑓 Fn 1o ∧ 𝜑′ ∧ 𝜓′ ) ) ) |
11 |
|
bnj151.11 |
⊢ ( 𝜃1 ↔ ( ( 𝑅 FrSe 𝐴 ∧ 𝑥 ∈ 𝐴 ) → ∃* 𝑓 ( 𝑓 Fn 1o ∧ 𝜑′ ∧ 𝜓′ ) ) ) |
12 |
|
bnj151.12 |
⊢ ( 𝜁′ ↔ [ 1o / 𝑛 ] 𝜁 ) |
13 |
|
bnj151.13 |
⊢ 𝐹 = { 〈 ∅ , pred ( 𝑥 , 𝐴 , 𝑅 ) 〉 } |
14 |
|
bnj151.14 |
⊢ ( 𝜑″ ↔ [ 𝐹 / 𝑓 ] 𝜑′ ) |
15 |
|
bnj151.15 |
⊢ ( 𝜓″ ↔ [ 𝐹 / 𝑓 ] 𝜓′ ) |
16 |
|
bnj151.16 |
⊢ ( 𝜁″ ↔ [ 𝐹 / 𝑓 ] 𝜁′ ) |
17 |
|
bnj151.17 |
⊢ ( 𝜁0 ↔ ( 𝑓 Fn 1o ∧ 𝜑′ ∧ 𝜓′ ) ) |
18 |
|
bnj151.18 |
⊢ ( 𝜁1 ↔ [ 𝑔 / 𝑓 ] 𝜁0 ) |
19 |
|
bnj151.19 |
⊢ ( 𝜑1 ↔ [ 𝑔 / 𝑓 ] 𝜑′ ) |
20 |
|
bnj151.20 |
⊢ ( 𝜓1 ↔ [ 𝑔 / 𝑓 ] 𝜓′ ) |
21 |
1 2 6 7 8 10 12 13 14 15 16
|
bnj150 |
⊢ 𝜃0 |
22 |
21 10
|
mpbi |
⊢ ( ( 𝑅 FrSe 𝐴 ∧ 𝑥 ∈ 𝐴 ) → ∃ 𝑓 ( 𝑓 Fn 1o ∧ 𝜑′ ∧ 𝜓′ ) ) |
23 |
1 7
|
bnj118 |
⊢ ( 𝜑′ ↔ ( 𝑓 ‘ ∅ ) = pred ( 𝑥 , 𝐴 , 𝑅 ) ) |
24 |
11 17 18 19 20 23
|
bnj149 |
⊢ 𝜃1 |
25 |
24 11
|
mpbi |
⊢ ( ( 𝑅 FrSe 𝐴 ∧ 𝑥 ∈ 𝐴 ) → ∃* 𝑓 ( 𝑓 Fn 1o ∧ 𝜑′ ∧ 𝜓′ ) ) |
26 |
|
df-eu |
⊢ ( ∃! 𝑓 ( 𝑓 Fn 1o ∧ 𝜑′ ∧ 𝜓′ ) ↔ ( ∃ 𝑓 ( 𝑓 Fn 1o ∧ 𝜑′ ∧ 𝜓′ ) ∧ ∃* 𝑓 ( 𝑓 Fn 1o ∧ 𝜑′ ∧ 𝜓′ ) ) ) |
27 |
22 25 26
|
sylanbrc |
⊢ ( ( 𝑅 FrSe 𝐴 ∧ 𝑥 ∈ 𝐴 ) → ∃! 𝑓 ( 𝑓 Fn 1o ∧ 𝜑′ ∧ 𝜓′ ) ) |
28 |
4 7 8 9
|
bnj130 |
⊢ ( 𝜃′ ↔ ( ( 𝑅 FrSe 𝐴 ∧ 𝑥 ∈ 𝐴 ) → ∃! 𝑓 ( 𝑓 Fn 1o ∧ 𝜑′ ∧ 𝜓′ ) ) ) |
29 |
27 28
|
mpbir |
⊢ 𝜃′ |
30 |
|
sbceq1a |
⊢ ( 𝑛 = 1o → ( 𝜃 ↔ [ 1o / 𝑛 ] 𝜃 ) ) |
31 |
30 9
|
bitr4di |
⊢ ( 𝑛 = 1o → ( 𝜃 ↔ 𝜃′ ) ) |
32 |
29 31
|
mpbiri |
⊢ ( 𝑛 = 1o → 𝜃 ) |
33 |
32
|
a1d |
⊢ ( 𝑛 = 1o → ( ( 𝑛 ∈ 𝐷 ∧ 𝜏 ) → 𝜃 ) ) |