Metamath Proof Explorer


Theorem bnj151

Description: Technical lemma for bnj153 . This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (New usage is discouraged.)

Ref Expression
Hypotheses bnj151.1 ( 𝜑 ↔ ( 𝑓 ‘ ∅ ) = pred ( 𝑥 , 𝐴 , 𝑅 ) )
bnj151.2 ( 𝜓 ↔ ∀ 𝑖 ∈ ω ( suc 𝑖𝑛 → ( 𝑓 ‘ suc 𝑖 ) = 𝑦 ∈ ( 𝑓𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) )
bnj151.3 𝐷 = ( ω ∖ { ∅ } )
bnj151.4 ( 𝜃 ↔ ( ( 𝑅 FrSe 𝐴𝑥𝐴 ) → ∃! 𝑓 ( 𝑓 Fn 𝑛𝜑𝜓 ) ) )
bnj151.5 ( 𝜏 ↔ ∀ 𝑚𝐷 ( 𝑚 E 𝑛[ 𝑚 / 𝑛 ] 𝜃 ) )
bnj151.6 ( 𝜁 ↔ ( ( 𝑅 FrSe 𝐴𝑥𝐴 ) → ( 𝑓 Fn 𝑛𝜑𝜓 ) ) )
bnj151.7 ( 𝜑′[ 1o / 𝑛 ] 𝜑 )
bnj151.8 ( 𝜓′[ 1o / 𝑛 ] 𝜓 )
bnj151.9 ( 𝜃′[ 1o / 𝑛 ] 𝜃 )
bnj151.10 ( 𝜃0 ↔ ( ( 𝑅 FrSe 𝐴𝑥𝐴 ) → ∃ 𝑓 ( 𝑓 Fn 1o𝜑′𝜓′ ) ) )
bnj151.11 ( 𝜃1 ↔ ( ( 𝑅 FrSe 𝐴𝑥𝐴 ) → ∃* 𝑓 ( 𝑓 Fn 1o𝜑′𝜓′ ) ) )
bnj151.12 ( 𝜁′[ 1o / 𝑛 ] 𝜁 )
bnj151.13 𝐹 = { ⟨ ∅ , pred ( 𝑥 , 𝐴 , 𝑅 ) ⟩ }
bnj151.14 ( 𝜑″[ 𝐹 / 𝑓 ] 𝜑′ )
bnj151.15 ( 𝜓″[ 𝐹 / 𝑓 ] 𝜓′ )
bnj151.16 ( 𝜁″[ 𝐹 / 𝑓 ] 𝜁′ )
bnj151.17 ( 𝜁0 ↔ ( 𝑓 Fn 1o𝜑′𝜓′ ) )
bnj151.18 ( 𝜁1[ 𝑔 / 𝑓 ] 𝜁0 )
bnj151.19 ( 𝜑1[ 𝑔 / 𝑓 ] 𝜑′ )
bnj151.20 ( 𝜓1[ 𝑔 / 𝑓 ] 𝜓′ )
Assertion bnj151 ( 𝑛 = 1o → ( ( 𝑛𝐷𝜏 ) → 𝜃 ) )

Proof

Step Hyp Ref Expression
1 bnj151.1 ( 𝜑 ↔ ( 𝑓 ‘ ∅ ) = pred ( 𝑥 , 𝐴 , 𝑅 ) )
2 bnj151.2 ( 𝜓 ↔ ∀ 𝑖 ∈ ω ( suc 𝑖𝑛 → ( 𝑓 ‘ suc 𝑖 ) = 𝑦 ∈ ( 𝑓𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) )
3 bnj151.3 𝐷 = ( ω ∖ { ∅ } )
4 bnj151.4 ( 𝜃 ↔ ( ( 𝑅 FrSe 𝐴𝑥𝐴 ) → ∃! 𝑓 ( 𝑓 Fn 𝑛𝜑𝜓 ) ) )
5 bnj151.5 ( 𝜏 ↔ ∀ 𝑚𝐷 ( 𝑚 E 𝑛[ 𝑚 / 𝑛 ] 𝜃 ) )
6 bnj151.6 ( 𝜁 ↔ ( ( 𝑅 FrSe 𝐴𝑥𝐴 ) → ( 𝑓 Fn 𝑛𝜑𝜓 ) ) )
7 bnj151.7 ( 𝜑′[ 1o / 𝑛 ] 𝜑 )
8 bnj151.8 ( 𝜓′[ 1o / 𝑛 ] 𝜓 )
9 bnj151.9 ( 𝜃′[ 1o / 𝑛 ] 𝜃 )
10 bnj151.10 ( 𝜃0 ↔ ( ( 𝑅 FrSe 𝐴𝑥𝐴 ) → ∃ 𝑓 ( 𝑓 Fn 1o𝜑′𝜓′ ) ) )
11 bnj151.11 ( 𝜃1 ↔ ( ( 𝑅 FrSe 𝐴𝑥𝐴 ) → ∃* 𝑓 ( 𝑓 Fn 1o𝜑′𝜓′ ) ) )
12 bnj151.12 ( 𝜁′[ 1o / 𝑛 ] 𝜁 )
13 bnj151.13 𝐹 = { ⟨ ∅ , pred ( 𝑥 , 𝐴 , 𝑅 ) ⟩ }
14 bnj151.14 ( 𝜑″[ 𝐹 / 𝑓 ] 𝜑′ )
15 bnj151.15 ( 𝜓″[ 𝐹 / 𝑓 ] 𝜓′ )
16 bnj151.16 ( 𝜁″[ 𝐹 / 𝑓 ] 𝜁′ )
17 bnj151.17 ( 𝜁0 ↔ ( 𝑓 Fn 1o𝜑′𝜓′ ) )
18 bnj151.18 ( 𝜁1[ 𝑔 / 𝑓 ] 𝜁0 )
19 bnj151.19 ( 𝜑1[ 𝑔 / 𝑓 ] 𝜑′ )
20 bnj151.20 ( 𝜓1[ 𝑔 / 𝑓 ] 𝜓′ )
21 1 2 6 7 8 10 12 13 14 15 16 bnj150 𝜃0
22 21 10 mpbi ( ( 𝑅 FrSe 𝐴𝑥𝐴 ) → ∃ 𝑓 ( 𝑓 Fn 1o𝜑′𝜓′ ) )
23 1 7 bnj118 ( 𝜑′ ↔ ( 𝑓 ‘ ∅ ) = pred ( 𝑥 , 𝐴 , 𝑅 ) )
24 11 17 18 19 20 23 bnj149 𝜃1
25 24 11 mpbi ( ( 𝑅 FrSe 𝐴𝑥𝐴 ) → ∃* 𝑓 ( 𝑓 Fn 1o𝜑′𝜓′ ) )
26 df-eu ( ∃! 𝑓 ( 𝑓 Fn 1o𝜑′𝜓′ ) ↔ ( ∃ 𝑓 ( 𝑓 Fn 1o𝜑′𝜓′ ) ∧ ∃* 𝑓 ( 𝑓 Fn 1o𝜑′𝜓′ ) ) )
27 22 25 26 sylanbrc ( ( 𝑅 FrSe 𝐴𝑥𝐴 ) → ∃! 𝑓 ( 𝑓 Fn 1o𝜑′𝜓′ ) )
28 4 7 8 9 bnj130 ( 𝜃′ ↔ ( ( 𝑅 FrSe 𝐴𝑥𝐴 ) → ∃! 𝑓 ( 𝑓 Fn 1o𝜑′𝜓′ ) ) )
29 27 28 mpbir 𝜃′
30 sbceq1a ( 𝑛 = 1o → ( 𝜃[ 1o / 𝑛 ] 𝜃 ) )
31 30 9 bitr4di ( 𝑛 = 1o → ( 𝜃𝜃′ ) )
32 29 31 mpbiri ( 𝑛 = 1o𝜃 )
33 32 a1d ( 𝑛 = 1o → ( ( 𝑛𝐷𝜏 ) → 𝜃 ) )