Step |
Hyp |
Ref |
Expression |
1 |
|
bnj1514.1 |
⊢ 𝐵 = { 𝑑 ∣ ( 𝑑 ⊆ 𝐴 ∧ ∀ 𝑥 ∈ 𝑑 pred ( 𝑥 , 𝐴 , 𝑅 ) ⊆ 𝑑 ) } |
2 |
|
bnj1514.2 |
⊢ 𝑌 = 〈 𝑥 , ( 𝑓 ↾ pred ( 𝑥 , 𝐴 , 𝑅 ) ) 〉 |
3 |
|
bnj1514.3 |
⊢ 𝐶 = { 𝑓 ∣ ∃ 𝑑 ∈ 𝐵 ( 𝑓 Fn 𝑑 ∧ ∀ 𝑥 ∈ 𝑑 ( 𝑓 ‘ 𝑥 ) = ( 𝐺 ‘ 𝑌 ) ) } |
4 |
3
|
bnj1436 |
⊢ ( 𝑓 ∈ 𝐶 → ∃ 𝑑 ∈ 𝐵 ( 𝑓 Fn 𝑑 ∧ ∀ 𝑥 ∈ 𝑑 ( 𝑓 ‘ 𝑥 ) = ( 𝐺 ‘ 𝑌 ) ) ) |
5 |
|
df-rex |
⊢ ( ∃ 𝑑 ∈ 𝐵 ( 𝑓 Fn 𝑑 ∧ ∀ 𝑥 ∈ 𝑑 ( 𝑓 ‘ 𝑥 ) = ( 𝐺 ‘ 𝑌 ) ) ↔ ∃ 𝑑 ( 𝑑 ∈ 𝐵 ∧ ( 𝑓 Fn 𝑑 ∧ ∀ 𝑥 ∈ 𝑑 ( 𝑓 ‘ 𝑥 ) = ( 𝐺 ‘ 𝑌 ) ) ) ) |
6 |
|
3anass |
⊢ ( ( 𝑑 ∈ 𝐵 ∧ 𝑓 Fn 𝑑 ∧ ∀ 𝑥 ∈ 𝑑 ( 𝑓 ‘ 𝑥 ) = ( 𝐺 ‘ 𝑌 ) ) ↔ ( 𝑑 ∈ 𝐵 ∧ ( 𝑓 Fn 𝑑 ∧ ∀ 𝑥 ∈ 𝑑 ( 𝑓 ‘ 𝑥 ) = ( 𝐺 ‘ 𝑌 ) ) ) ) |
7 |
5 6
|
bnj133 |
⊢ ( ∃ 𝑑 ∈ 𝐵 ( 𝑓 Fn 𝑑 ∧ ∀ 𝑥 ∈ 𝑑 ( 𝑓 ‘ 𝑥 ) = ( 𝐺 ‘ 𝑌 ) ) ↔ ∃ 𝑑 ( 𝑑 ∈ 𝐵 ∧ 𝑓 Fn 𝑑 ∧ ∀ 𝑥 ∈ 𝑑 ( 𝑓 ‘ 𝑥 ) = ( 𝐺 ‘ 𝑌 ) ) ) |
8 |
4 7
|
sylib |
⊢ ( 𝑓 ∈ 𝐶 → ∃ 𝑑 ( 𝑑 ∈ 𝐵 ∧ 𝑓 Fn 𝑑 ∧ ∀ 𝑥 ∈ 𝑑 ( 𝑓 ‘ 𝑥 ) = ( 𝐺 ‘ 𝑌 ) ) ) |
9 |
|
simp3 |
⊢ ( ( 𝑑 ∈ 𝐵 ∧ 𝑓 Fn 𝑑 ∧ ∀ 𝑥 ∈ 𝑑 ( 𝑓 ‘ 𝑥 ) = ( 𝐺 ‘ 𝑌 ) ) → ∀ 𝑥 ∈ 𝑑 ( 𝑓 ‘ 𝑥 ) = ( 𝐺 ‘ 𝑌 ) ) |
10 |
|
fndm |
⊢ ( 𝑓 Fn 𝑑 → dom 𝑓 = 𝑑 ) |
11 |
10
|
3ad2ant2 |
⊢ ( ( 𝑑 ∈ 𝐵 ∧ 𝑓 Fn 𝑑 ∧ ∀ 𝑥 ∈ 𝑑 ( 𝑓 ‘ 𝑥 ) = ( 𝐺 ‘ 𝑌 ) ) → dom 𝑓 = 𝑑 ) |
12 |
11
|
raleqdv |
⊢ ( ( 𝑑 ∈ 𝐵 ∧ 𝑓 Fn 𝑑 ∧ ∀ 𝑥 ∈ 𝑑 ( 𝑓 ‘ 𝑥 ) = ( 𝐺 ‘ 𝑌 ) ) → ( ∀ 𝑥 ∈ dom 𝑓 ( 𝑓 ‘ 𝑥 ) = ( 𝐺 ‘ 𝑌 ) ↔ ∀ 𝑥 ∈ 𝑑 ( 𝑓 ‘ 𝑥 ) = ( 𝐺 ‘ 𝑌 ) ) ) |
13 |
9 12
|
mpbird |
⊢ ( ( 𝑑 ∈ 𝐵 ∧ 𝑓 Fn 𝑑 ∧ ∀ 𝑥 ∈ 𝑑 ( 𝑓 ‘ 𝑥 ) = ( 𝐺 ‘ 𝑌 ) ) → ∀ 𝑥 ∈ dom 𝑓 ( 𝑓 ‘ 𝑥 ) = ( 𝐺 ‘ 𝑌 ) ) |
14 |
8 13
|
bnj593 |
⊢ ( 𝑓 ∈ 𝐶 → ∃ 𝑑 ∀ 𝑥 ∈ dom 𝑓 ( 𝑓 ‘ 𝑥 ) = ( 𝐺 ‘ 𝑌 ) ) |
15 |
14
|
bnj937 |
⊢ ( 𝑓 ∈ 𝐶 → ∀ 𝑥 ∈ dom 𝑓 ( 𝑓 ‘ 𝑥 ) = ( 𝐺 ‘ 𝑌 ) ) |