| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							bnj1514.1 | 
							⊢ 𝐵  =  { 𝑑  ∣  ( 𝑑  ⊆  𝐴  ∧  ∀ 𝑥  ∈  𝑑  pred ( 𝑥 ,  𝐴 ,  𝑅 )  ⊆  𝑑 ) }  | 
						
						
							| 2 | 
							
								
							 | 
							bnj1514.2 | 
							⊢ 𝑌  =  〈 𝑥 ,  ( 𝑓  ↾   pred ( 𝑥 ,  𝐴 ,  𝑅 ) ) 〉  | 
						
						
							| 3 | 
							
								
							 | 
							bnj1514.3 | 
							⊢ 𝐶  =  { 𝑓  ∣  ∃ 𝑑  ∈  𝐵 ( 𝑓  Fn  𝑑  ∧  ∀ 𝑥  ∈  𝑑 ( 𝑓 ‘ 𝑥 )  =  ( 𝐺 ‘ 𝑌 ) ) }  | 
						
						
							| 4 | 
							
								3
							 | 
							bnj1436 | 
							⊢ ( 𝑓  ∈  𝐶  →  ∃ 𝑑  ∈  𝐵 ( 𝑓  Fn  𝑑  ∧  ∀ 𝑥  ∈  𝑑 ( 𝑓 ‘ 𝑥 )  =  ( 𝐺 ‘ 𝑌 ) ) )  | 
						
						
							| 5 | 
							
								
							 | 
							df-rex | 
							⊢ ( ∃ 𝑑  ∈  𝐵 ( 𝑓  Fn  𝑑  ∧  ∀ 𝑥  ∈  𝑑 ( 𝑓 ‘ 𝑥 )  =  ( 𝐺 ‘ 𝑌 ) )  ↔  ∃ 𝑑 ( 𝑑  ∈  𝐵  ∧  ( 𝑓  Fn  𝑑  ∧  ∀ 𝑥  ∈  𝑑 ( 𝑓 ‘ 𝑥 )  =  ( 𝐺 ‘ 𝑌 ) ) ) )  | 
						
						
							| 6 | 
							
								
							 | 
							3anass | 
							⊢ ( ( 𝑑  ∈  𝐵  ∧  𝑓  Fn  𝑑  ∧  ∀ 𝑥  ∈  𝑑 ( 𝑓 ‘ 𝑥 )  =  ( 𝐺 ‘ 𝑌 ) )  ↔  ( 𝑑  ∈  𝐵  ∧  ( 𝑓  Fn  𝑑  ∧  ∀ 𝑥  ∈  𝑑 ( 𝑓 ‘ 𝑥 )  =  ( 𝐺 ‘ 𝑌 ) ) ) )  | 
						
						
							| 7 | 
							
								5 6
							 | 
							bnj133 | 
							⊢ ( ∃ 𝑑  ∈  𝐵 ( 𝑓  Fn  𝑑  ∧  ∀ 𝑥  ∈  𝑑 ( 𝑓 ‘ 𝑥 )  =  ( 𝐺 ‘ 𝑌 ) )  ↔  ∃ 𝑑 ( 𝑑  ∈  𝐵  ∧  𝑓  Fn  𝑑  ∧  ∀ 𝑥  ∈  𝑑 ( 𝑓 ‘ 𝑥 )  =  ( 𝐺 ‘ 𝑌 ) ) )  | 
						
						
							| 8 | 
							
								4 7
							 | 
							sylib | 
							⊢ ( 𝑓  ∈  𝐶  →  ∃ 𝑑 ( 𝑑  ∈  𝐵  ∧  𝑓  Fn  𝑑  ∧  ∀ 𝑥  ∈  𝑑 ( 𝑓 ‘ 𝑥 )  =  ( 𝐺 ‘ 𝑌 ) ) )  | 
						
						
							| 9 | 
							
								
							 | 
							simp3 | 
							⊢ ( ( 𝑑  ∈  𝐵  ∧  𝑓  Fn  𝑑  ∧  ∀ 𝑥  ∈  𝑑 ( 𝑓 ‘ 𝑥 )  =  ( 𝐺 ‘ 𝑌 ) )  →  ∀ 𝑥  ∈  𝑑 ( 𝑓 ‘ 𝑥 )  =  ( 𝐺 ‘ 𝑌 ) )  | 
						
						
							| 10 | 
							
								
							 | 
							fndm | 
							⊢ ( 𝑓  Fn  𝑑  →  dom  𝑓  =  𝑑 )  | 
						
						
							| 11 | 
							
								10
							 | 
							3ad2ant2 | 
							⊢ ( ( 𝑑  ∈  𝐵  ∧  𝑓  Fn  𝑑  ∧  ∀ 𝑥  ∈  𝑑 ( 𝑓 ‘ 𝑥 )  =  ( 𝐺 ‘ 𝑌 ) )  →  dom  𝑓  =  𝑑 )  | 
						
						
							| 12 | 
							
								9 11
							 | 
							raleqtrrdv | 
							⊢ ( ( 𝑑  ∈  𝐵  ∧  𝑓  Fn  𝑑  ∧  ∀ 𝑥  ∈  𝑑 ( 𝑓 ‘ 𝑥 )  =  ( 𝐺 ‘ 𝑌 ) )  →  ∀ 𝑥  ∈  dom  𝑓 ( 𝑓 ‘ 𝑥 )  =  ( 𝐺 ‘ 𝑌 ) )  | 
						
						
							| 13 | 
							
								8 12
							 | 
							bnj593 | 
							⊢ ( 𝑓  ∈  𝐶  →  ∃ 𝑑 ∀ 𝑥  ∈  dom  𝑓 ( 𝑓 ‘ 𝑥 )  =  ( 𝐺 ‘ 𝑌 ) )  | 
						
						
							| 14 | 
							
								13
							 | 
							bnj937 | 
							⊢ ( 𝑓  ∈  𝐶  →  ∀ 𝑥  ∈  dom  𝑓 ( 𝑓 ‘ 𝑥 )  =  ( 𝐺 ‘ 𝑌 ) )  |