Metamath Proof Explorer


Theorem bnj1518

Description: Technical lemma for bnj1500 . This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (New usage is discouraged.)

Ref Expression
Hypotheses bnj1518.1 𝐵 = { 𝑑 ∣ ( 𝑑𝐴 ∧ ∀ 𝑥𝑑 pred ( 𝑥 , 𝐴 , 𝑅 ) ⊆ 𝑑 ) }
bnj1518.2 𝑌 = ⟨ 𝑥 , ( 𝑓 ↾ pred ( 𝑥 , 𝐴 , 𝑅 ) ) ⟩
bnj1518.3 𝐶 = { 𝑓 ∣ ∃ 𝑑𝐵 ( 𝑓 Fn 𝑑 ∧ ∀ 𝑥𝑑 ( 𝑓𝑥 ) = ( 𝐺𝑌 ) ) }
bnj1518.4 𝐹 = 𝐶
bnj1518.5 ( 𝜑 ↔ ( 𝑅 FrSe 𝐴𝑥𝐴 ) )
bnj1518.6 ( 𝜓 ↔ ( 𝜑𝑓𝐶𝑥 ∈ dom 𝑓 ) )
Assertion bnj1518 ( 𝜓 → ∀ 𝑑 𝜓 )

Proof

Step Hyp Ref Expression
1 bnj1518.1 𝐵 = { 𝑑 ∣ ( 𝑑𝐴 ∧ ∀ 𝑥𝑑 pred ( 𝑥 , 𝐴 , 𝑅 ) ⊆ 𝑑 ) }
2 bnj1518.2 𝑌 = ⟨ 𝑥 , ( 𝑓 ↾ pred ( 𝑥 , 𝐴 , 𝑅 ) ) ⟩
3 bnj1518.3 𝐶 = { 𝑓 ∣ ∃ 𝑑𝐵 ( 𝑓 Fn 𝑑 ∧ ∀ 𝑥𝑑 ( 𝑓𝑥 ) = ( 𝐺𝑌 ) ) }
4 bnj1518.4 𝐹 = 𝐶
5 bnj1518.5 ( 𝜑 ↔ ( 𝑅 FrSe 𝐴𝑥𝐴 ) )
6 bnj1518.6 ( 𝜓 ↔ ( 𝜑𝑓𝐶𝑥 ∈ dom 𝑓 ) )
7 nfv 𝑑 𝜑
8 nfre1 𝑑𝑑𝐵 ( 𝑓 Fn 𝑑 ∧ ∀ 𝑥𝑑 ( 𝑓𝑥 ) = ( 𝐺𝑌 ) )
9 8 nfab 𝑑 { 𝑓 ∣ ∃ 𝑑𝐵 ( 𝑓 Fn 𝑑 ∧ ∀ 𝑥𝑑 ( 𝑓𝑥 ) = ( 𝐺𝑌 ) ) }
10 3 9 nfcxfr 𝑑 𝐶
11 10 nfcri 𝑑 𝑓𝐶
12 nfv 𝑑 𝑥 ∈ dom 𝑓
13 7 11 12 nf3an 𝑑 ( 𝜑𝑓𝐶𝑥 ∈ dom 𝑓 )
14 6 13 nfxfr 𝑑 𝜓
15 14 nf5ri ( 𝜓 → ∀ 𝑑 𝜓 )