Description: Technical lemma for bnj1500 . This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Hypotheses | bnj1518.1 | ⊢ 𝐵 = { 𝑑 ∣ ( 𝑑 ⊆ 𝐴 ∧ ∀ 𝑥 ∈ 𝑑 pred ( 𝑥 , 𝐴 , 𝑅 ) ⊆ 𝑑 ) } | |
bnj1518.2 | ⊢ 𝑌 = 〈 𝑥 , ( 𝑓 ↾ pred ( 𝑥 , 𝐴 , 𝑅 ) ) 〉 | ||
bnj1518.3 | ⊢ 𝐶 = { 𝑓 ∣ ∃ 𝑑 ∈ 𝐵 ( 𝑓 Fn 𝑑 ∧ ∀ 𝑥 ∈ 𝑑 ( 𝑓 ‘ 𝑥 ) = ( 𝐺 ‘ 𝑌 ) ) } | ||
bnj1518.4 | ⊢ 𝐹 = ∪ 𝐶 | ||
bnj1518.5 | ⊢ ( 𝜑 ↔ ( 𝑅 FrSe 𝐴 ∧ 𝑥 ∈ 𝐴 ) ) | ||
bnj1518.6 | ⊢ ( 𝜓 ↔ ( 𝜑 ∧ 𝑓 ∈ 𝐶 ∧ 𝑥 ∈ dom 𝑓 ) ) | ||
Assertion | bnj1518 | ⊢ ( 𝜓 → ∀ 𝑑 𝜓 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bnj1518.1 | ⊢ 𝐵 = { 𝑑 ∣ ( 𝑑 ⊆ 𝐴 ∧ ∀ 𝑥 ∈ 𝑑 pred ( 𝑥 , 𝐴 , 𝑅 ) ⊆ 𝑑 ) } | |
2 | bnj1518.2 | ⊢ 𝑌 = 〈 𝑥 , ( 𝑓 ↾ pred ( 𝑥 , 𝐴 , 𝑅 ) ) 〉 | |
3 | bnj1518.3 | ⊢ 𝐶 = { 𝑓 ∣ ∃ 𝑑 ∈ 𝐵 ( 𝑓 Fn 𝑑 ∧ ∀ 𝑥 ∈ 𝑑 ( 𝑓 ‘ 𝑥 ) = ( 𝐺 ‘ 𝑌 ) ) } | |
4 | bnj1518.4 | ⊢ 𝐹 = ∪ 𝐶 | |
5 | bnj1518.5 | ⊢ ( 𝜑 ↔ ( 𝑅 FrSe 𝐴 ∧ 𝑥 ∈ 𝐴 ) ) | |
6 | bnj1518.6 | ⊢ ( 𝜓 ↔ ( 𝜑 ∧ 𝑓 ∈ 𝐶 ∧ 𝑥 ∈ dom 𝑓 ) ) | |
7 | nfv | ⊢ Ⅎ 𝑑 𝜑 | |
8 | nfre1 | ⊢ Ⅎ 𝑑 ∃ 𝑑 ∈ 𝐵 ( 𝑓 Fn 𝑑 ∧ ∀ 𝑥 ∈ 𝑑 ( 𝑓 ‘ 𝑥 ) = ( 𝐺 ‘ 𝑌 ) ) | |
9 | 8 | nfab | ⊢ Ⅎ 𝑑 { 𝑓 ∣ ∃ 𝑑 ∈ 𝐵 ( 𝑓 Fn 𝑑 ∧ ∀ 𝑥 ∈ 𝑑 ( 𝑓 ‘ 𝑥 ) = ( 𝐺 ‘ 𝑌 ) ) } |
10 | 3 9 | nfcxfr | ⊢ Ⅎ 𝑑 𝐶 |
11 | 10 | nfcri | ⊢ Ⅎ 𝑑 𝑓 ∈ 𝐶 |
12 | nfv | ⊢ Ⅎ 𝑑 𝑥 ∈ dom 𝑓 | |
13 | 7 11 12 | nf3an | ⊢ Ⅎ 𝑑 ( 𝜑 ∧ 𝑓 ∈ 𝐶 ∧ 𝑥 ∈ dom 𝑓 ) |
14 | 6 13 | nfxfr | ⊢ Ⅎ 𝑑 𝜓 |
15 | 14 | nf5ri | ⊢ ( 𝜓 → ∀ 𝑑 𝜓 ) |