Metamath Proof Explorer


Theorem bnj1519

Description: Technical lemma for bnj1500 . This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (New usage is discouraged.)

Ref Expression
Hypotheses bnj1519.1 𝐵 = { 𝑑 ∣ ( 𝑑𝐴 ∧ ∀ 𝑥𝑑 pred ( 𝑥 , 𝐴 , 𝑅 ) ⊆ 𝑑 ) }
bnj1519.2 𝑌 = ⟨ 𝑥 , ( 𝑓 ↾ pred ( 𝑥 , 𝐴 , 𝑅 ) ) ⟩
bnj1519.3 𝐶 = { 𝑓 ∣ ∃ 𝑑𝐵 ( 𝑓 Fn 𝑑 ∧ ∀ 𝑥𝑑 ( 𝑓𝑥 ) = ( 𝐺𝑌 ) ) }
bnj1519.4 𝐹 = 𝐶
Assertion bnj1519 ( ( 𝐹𝑥 ) = ( 𝐺 ‘ ⟨ 𝑥 , ( 𝐹 ↾ pred ( 𝑥 , 𝐴 , 𝑅 ) ) ⟩ ) → ∀ 𝑑 ( 𝐹𝑥 ) = ( 𝐺 ‘ ⟨ 𝑥 , ( 𝐹 ↾ pred ( 𝑥 , 𝐴 , 𝑅 ) ) ⟩ ) )

Proof

Step Hyp Ref Expression
1 bnj1519.1 𝐵 = { 𝑑 ∣ ( 𝑑𝐴 ∧ ∀ 𝑥𝑑 pred ( 𝑥 , 𝐴 , 𝑅 ) ⊆ 𝑑 ) }
2 bnj1519.2 𝑌 = ⟨ 𝑥 , ( 𝑓 ↾ pred ( 𝑥 , 𝐴 , 𝑅 ) ) ⟩
3 bnj1519.3 𝐶 = { 𝑓 ∣ ∃ 𝑑𝐵 ( 𝑓 Fn 𝑑 ∧ ∀ 𝑥𝑑 ( 𝑓𝑥 ) = ( 𝐺𝑌 ) ) }
4 bnj1519.4 𝐹 = 𝐶
5 nfre1 𝑑𝑑𝐵 ( 𝑓 Fn 𝑑 ∧ ∀ 𝑥𝑑 ( 𝑓𝑥 ) = ( 𝐺𝑌 ) )
6 5 nfab 𝑑 { 𝑓 ∣ ∃ 𝑑𝐵 ( 𝑓 Fn 𝑑 ∧ ∀ 𝑥𝑑 ( 𝑓𝑥 ) = ( 𝐺𝑌 ) ) }
7 3 6 nfcxfr 𝑑 𝐶
8 7 nfuni 𝑑 𝐶
9 4 8 nfcxfr 𝑑 𝐹
10 nfcv 𝑑 𝑥
11 9 10 nffv 𝑑 ( 𝐹𝑥 )
12 nfcv 𝑑 𝐺
13 nfcv 𝑑 pred ( 𝑥 , 𝐴 , 𝑅 )
14 9 13 nfres 𝑑 ( 𝐹 ↾ pred ( 𝑥 , 𝐴 , 𝑅 ) )
15 10 14 nfop 𝑑𝑥 , ( 𝐹 ↾ pred ( 𝑥 , 𝐴 , 𝑅 ) ) ⟩
16 12 15 nffv 𝑑 ( 𝐺 ‘ ⟨ 𝑥 , ( 𝐹 ↾ pred ( 𝑥 , 𝐴 , 𝑅 ) ) ⟩ )
17 11 16 nfeq 𝑑 ( 𝐹𝑥 ) = ( 𝐺 ‘ ⟨ 𝑥 , ( 𝐹 ↾ pred ( 𝑥 , 𝐴 , 𝑅 ) ) ⟩ )
18 17 nf5ri ( ( 𝐹𝑥 ) = ( 𝐺 ‘ ⟨ 𝑥 , ( 𝐹 ↾ pred ( 𝑥 , 𝐴 , 𝑅 ) ) ⟩ ) → ∀ 𝑑 ( 𝐹𝑥 ) = ( 𝐺 ‘ ⟨ 𝑥 , ( 𝐹 ↾ pred ( 𝑥 , 𝐴 , 𝑅 ) ) ⟩ ) )