Metamath Proof Explorer


Theorem bnj1520

Description: Technical lemma for bnj1500 . This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (New usage is discouraged.)

Ref Expression
Hypotheses bnj1520.1 𝐵 = { 𝑑 ∣ ( 𝑑𝐴 ∧ ∀ 𝑥𝑑 pred ( 𝑥 , 𝐴 , 𝑅 ) ⊆ 𝑑 ) }
bnj1520.2 𝑌 = ⟨ 𝑥 , ( 𝑓 ↾ pred ( 𝑥 , 𝐴 , 𝑅 ) ) ⟩
bnj1520.3 𝐶 = { 𝑓 ∣ ∃ 𝑑𝐵 ( 𝑓 Fn 𝑑 ∧ ∀ 𝑥𝑑 ( 𝑓𝑥 ) = ( 𝐺𝑌 ) ) }
bnj1520.4 𝐹 = 𝐶
Assertion bnj1520 ( ( 𝐹𝑥 ) = ( 𝐺 ‘ ⟨ 𝑥 , ( 𝐹 ↾ pred ( 𝑥 , 𝐴 , 𝑅 ) ) ⟩ ) → ∀ 𝑓 ( 𝐹𝑥 ) = ( 𝐺 ‘ ⟨ 𝑥 , ( 𝐹 ↾ pred ( 𝑥 , 𝐴 , 𝑅 ) ) ⟩ ) )

Proof

Step Hyp Ref Expression
1 bnj1520.1 𝐵 = { 𝑑 ∣ ( 𝑑𝐴 ∧ ∀ 𝑥𝑑 pred ( 𝑥 , 𝐴 , 𝑅 ) ⊆ 𝑑 ) }
2 bnj1520.2 𝑌 = ⟨ 𝑥 , ( 𝑓 ↾ pred ( 𝑥 , 𝐴 , 𝑅 ) ) ⟩
3 bnj1520.3 𝐶 = { 𝑓 ∣ ∃ 𝑑𝐵 ( 𝑓 Fn 𝑑 ∧ ∀ 𝑥𝑑 ( 𝑓𝑥 ) = ( 𝐺𝑌 ) ) }
4 bnj1520.4 𝐹 = 𝐶
5 3 bnj1317 ( 𝑤𝐶 → ∀ 𝑓 𝑤𝐶 )
6 5 nfcii 𝑓 𝐶
7 6 nfuni 𝑓 𝐶
8 4 7 nfcxfr 𝑓 𝐹
9 nfcv 𝑓 𝑥
10 8 9 nffv 𝑓 ( 𝐹𝑥 )
11 nfcv 𝑓 𝐺
12 nfcv 𝑓 pred ( 𝑥 , 𝐴 , 𝑅 )
13 8 12 nfres 𝑓 ( 𝐹 ↾ pred ( 𝑥 , 𝐴 , 𝑅 ) )
14 9 13 nfop 𝑓𝑥 , ( 𝐹 ↾ pred ( 𝑥 , 𝐴 , 𝑅 ) ) ⟩
15 11 14 nffv 𝑓 ( 𝐺 ‘ ⟨ 𝑥 , ( 𝐹 ↾ pred ( 𝑥 , 𝐴 , 𝑅 ) ) ⟩ )
16 10 15 nfeq 𝑓 ( 𝐹𝑥 ) = ( 𝐺 ‘ ⟨ 𝑥 , ( 𝐹 ↾ pred ( 𝑥 , 𝐴 , 𝑅 ) ) ⟩ )
17 16 nf5ri ( ( 𝐹𝑥 ) = ( 𝐺 ‘ ⟨ 𝑥 , ( 𝐹 ↾ pred ( 𝑥 , 𝐴 , 𝑅 ) ) ⟩ ) → ∀ 𝑓 ( 𝐹𝑥 ) = ( 𝐺 ‘ ⟨ 𝑥 , ( 𝐹 ↾ pred ( 𝑥 , 𝐴 , 𝑅 ) ) ⟩ ) )