Step |
Hyp |
Ref |
Expression |
1 |
|
bnj1520.1 |
⊢ 𝐵 = { 𝑑 ∣ ( 𝑑 ⊆ 𝐴 ∧ ∀ 𝑥 ∈ 𝑑 pred ( 𝑥 , 𝐴 , 𝑅 ) ⊆ 𝑑 ) } |
2 |
|
bnj1520.2 |
⊢ 𝑌 = 〈 𝑥 , ( 𝑓 ↾ pred ( 𝑥 , 𝐴 , 𝑅 ) ) 〉 |
3 |
|
bnj1520.3 |
⊢ 𝐶 = { 𝑓 ∣ ∃ 𝑑 ∈ 𝐵 ( 𝑓 Fn 𝑑 ∧ ∀ 𝑥 ∈ 𝑑 ( 𝑓 ‘ 𝑥 ) = ( 𝐺 ‘ 𝑌 ) ) } |
4 |
|
bnj1520.4 |
⊢ 𝐹 = ∪ 𝐶 |
5 |
3
|
bnj1317 |
⊢ ( 𝑤 ∈ 𝐶 → ∀ 𝑓 𝑤 ∈ 𝐶 ) |
6 |
5
|
nfcii |
⊢ Ⅎ 𝑓 𝐶 |
7 |
6
|
nfuni |
⊢ Ⅎ 𝑓 ∪ 𝐶 |
8 |
4 7
|
nfcxfr |
⊢ Ⅎ 𝑓 𝐹 |
9 |
|
nfcv |
⊢ Ⅎ 𝑓 𝑥 |
10 |
8 9
|
nffv |
⊢ Ⅎ 𝑓 ( 𝐹 ‘ 𝑥 ) |
11 |
|
nfcv |
⊢ Ⅎ 𝑓 𝐺 |
12 |
|
nfcv |
⊢ Ⅎ 𝑓 pred ( 𝑥 , 𝐴 , 𝑅 ) |
13 |
8 12
|
nfres |
⊢ Ⅎ 𝑓 ( 𝐹 ↾ pred ( 𝑥 , 𝐴 , 𝑅 ) ) |
14 |
9 13
|
nfop |
⊢ Ⅎ 𝑓 〈 𝑥 , ( 𝐹 ↾ pred ( 𝑥 , 𝐴 , 𝑅 ) ) 〉 |
15 |
11 14
|
nffv |
⊢ Ⅎ 𝑓 ( 𝐺 ‘ 〈 𝑥 , ( 𝐹 ↾ pred ( 𝑥 , 𝐴 , 𝑅 ) ) 〉 ) |
16 |
10 15
|
nfeq |
⊢ Ⅎ 𝑓 ( 𝐹 ‘ 𝑥 ) = ( 𝐺 ‘ 〈 𝑥 , ( 𝐹 ↾ pred ( 𝑥 , 𝐴 , 𝑅 ) ) 〉 ) |
17 |
16
|
nf5ri |
⊢ ( ( 𝐹 ‘ 𝑥 ) = ( 𝐺 ‘ 〈 𝑥 , ( 𝐹 ↾ pred ( 𝑥 , 𝐴 , 𝑅 ) ) 〉 ) → ∀ 𝑓 ( 𝐹 ‘ 𝑥 ) = ( 𝐺 ‘ 〈 𝑥 , ( 𝐹 ↾ pred ( 𝑥 , 𝐴 , 𝑅 ) ) 〉 ) ) |