Metamath Proof Explorer
		
		
		
		Description:  First-order logic and set theory.  (Contributed by Jonathan Ben-Naim, 3-Jun-2011)  (New usage is discouraged.)
		
			
				
					 | 
					 | 
					Ref | 
					Expression | 
				
					
						 | 
						Hypotheses | 
						bnj1521.1 | 
						⊢ ( 𝜒  →  ∃ 𝑥  ∈  𝐵 𝜑 )  | 
					
					
						 | 
						 | 
						bnj1521.2 | 
						⊢ ( 𝜃  ↔  ( 𝜒  ∧  𝑥  ∈  𝐵  ∧  𝜑 ) )  | 
					
					
						 | 
						 | 
						bnj1521.3 | 
						⊢ ( 𝜒  →  ∀ 𝑥 𝜒 )  | 
					
				
					 | 
					Assertion | 
					bnj1521 | 
					⊢  ( 𝜒  →  ∃ 𝑥 𝜃 )  | 
				
			
		
		
			
				Proof
				
					
						| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							bnj1521.1 | 
							⊢ ( 𝜒  →  ∃ 𝑥  ∈  𝐵 𝜑 )  | 
						
						
							| 2 | 
							
								
							 | 
							bnj1521.2 | 
							⊢ ( 𝜃  ↔  ( 𝜒  ∧  𝑥  ∈  𝐵  ∧  𝜑 ) )  | 
						
						
							| 3 | 
							
								
							 | 
							bnj1521.3 | 
							⊢ ( 𝜒  →  ∀ 𝑥 𝜒 )  | 
						
						
							| 4 | 
							
								1
							 | 
							bnj1196 | 
							⊢ ( 𝜒  →  ∃ 𝑥 ( 𝑥  ∈  𝐵  ∧  𝜑 ) )  | 
						
						
							| 5 | 
							
								4 2 3
							 | 
							bnj1345 | 
							⊢ ( 𝜒  →  ∃ 𝑥 𝜃 )  |