Step |
Hyp |
Ref |
Expression |
1 |
|
bnj1522.1 |
⊢ 𝐵 = { 𝑑 ∣ ( 𝑑 ⊆ 𝐴 ∧ ∀ 𝑥 ∈ 𝑑 pred ( 𝑥 , 𝐴 , 𝑅 ) ⊆ 𝑑 ) } |
2 |
|
bnj1522.2 |
⊢ 𝑌 = 〈 𝑥 , ( 𝑓 ↾ pred ( 𝑥 , 𝐴 , 𝑅 ) ) 〉 |
3 |
|
bnj1522.3 |
⊢ 𝐶 = { 𝑓 ∣ ∃ 𝑑 ∈ 𝐵 ( 𝑓 Fn 𝑑 ∧ ∀ 𝑥 ∈ 𝑑 ( 𝑓 ‘ 𝑥 ) = ( 𝐺 ‘ 𝑌 ) ) } |
4 |
|
bnj1522.4 |
⊢ 𝐹 = ∪ 𝐶 |
5 |
|
biid |
⊢ ( ( 𝑅 FrSe 𝐴 ∧ 𝐻 Fn 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ( 𝐻 ‘ 𝑥 ) = ( 𝐺 ‘ 〈 𝑥 , ( 𝐻 ↾ pred ( 𝑥 , 𝐴 , 𝑅 ) ) 〉 ) ) ↔ ( 𝑅 FrSe 𝐴 ∧ 𝐻 Fn 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ( 𝐻 ‘ 𝑥 ) = ( 𝐺 ‘ 〈 𝑥 , ( 𝐻 ↾ pred ( 𝑥 , 𝐴 , 𝑅 ) ) 〉 ) ) ) |
6 |
|
biid |
⊢ ( ( ( 𝑅 FrSe 𝐴 ∧ 𝐻 Fn 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ( 𝐻 ‘ 𝑥 ) = ( 𝐺 ‘ 〈 𝑥 , ( 𝐻 ↾ pred ( 𝑥 , 𝐴 , 𝑅 ) ) 〉 ) ) ∧ 𝐹 ≠ 𝐻 ) ↔ ( ( 𝑅 FrSe 𝐴 ∧ 𝐻 Fn 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ( 𝐻 ‘ 𝑥 ) = ( 𝐺 ‘ 〈 𝑥 , ( 𝐻 ↾ pred ( 𝑥 , 𝐴 , 𝑅 ) ) 〉 ) ) ∧ 𝐹 ≠ 𝐻 ) ) |
7 |
|
biid |
⊢ ( ( ( ( 𝑅 FrSe 𝐴 ∧ 𝐻 Fn 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ( 𝐻 ‘ 𝑥 ) = ( 𝐺 ‘ 〈 𝑥 , ( 𝐻 ↾ pred ( 𝑥 , 𝐴 , 𝑅 ) ) 〉 ) ) ∧ 𝐹 ≠ 𝐻 ) ∧ 𝑥 ∈ 𝐴 ∧ ( 𝐹 ‘ 𝑥 ) ≠ ( 𝐻 ‘ 𝑥 ) ) ↔ ( ( ( 𝑅 FrSe 𝐴 ∧ 𝐻 Fn 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ( 𝐻 ‘ 𝑥 ) = ( 𝐺 ‘ 〈 𝑥 , ( 𝐻 ↾ pred ( 𝑥 , 𝐴 , 𝑅 ) ) 〉 ) ) ∧ 𝐹 ≠ 𝐻 ) ∧ 𝑥 ∈ 𝐴 ∧ ( 𝐹 ‘ 𝑥 ) ≠ ( 𝐻 ‘ 𝑥 ) ) ) |
8 |
|
eqid |
⊢ { 𝑥 ∈ 𝐴 ∣ ( 𝐹 ‘ 𝑥 ) ≠ ( 𝐻 ‘ 𝑥 ) } = { 𝑥 ∈ 𝐴 ∣ ( 𝐹 ‘ 𝑥 ) ≠ ( 𝐻 ‘ 𝑥 ) } |
9 |
|
biid |
⊢ ( ( ( ( ( 𝑅 FrSe 𝐴 ∧ 𝐻 Fn 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ( 𝐻 ‘ 𝑥 ) = ( 𝐺 ‘ 〈 𝑥 , ( 𝐻 ↾ pred ( 𝑥 , 𝐴 , 𝑅 ) ) 〉 ) ) ∧ 𝐹 ≠ 𝐻 ) ∧ 𝑥 ∈ 𝐴 ∧ ( 𝐹 ‘ 𝑥 ) ≠ ( 𝐻 ‘ 𝑥 ) ) ∧ 𝑦 ∈ { 𝑥 ∈ 𝐴 ∣ ( 𝐹 ‘ 𝑥 ) ≠ ( 𝐻 ‘ 𝑥 ) } ∧ ∀ 𝑧 ∈ { 𝑥 ∈ 𝐴 ∣ ( 𝐹 ‘ 𝑥 ) ≠ ( 𝐻 ‘ 𝑥 ) } ¬ 𝑧 𝑅 𝑦 ) ↔ ( ( ( ( 𝑅 FrSe 𝐴 ∧ 𝐻 Fn 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ( 𝐻 ‘ 𝑥 ) = ( 𝐺 ‘ 〈 𝑥 , ( 𝐻 ↾ pred ( 𝑥 , 𝐴 , 𝑅 ) ) 〉 ) ) ∧ 𝐹 ≠ 𝐻 ) ∧ 𝑥 ∈ 𝐴 ∧ ( 𝐹 ‘ 𝑥 ) ≠ ( 𝐻 ‘ 𝑥 ) ) ∧ 𝑦 ∈ { 𝑥 ∈ 𝐴 ∣ ( 𝐹 ‘ 𝑥 ) ≠ ( 𝐻 ‘ 𝑥 ) } ∧ ∀ 𝑧 ∈ { 𝑥 ∈ 𝐴 ∣ ( 𝐹 ‘ 𝑥 ) ≠ ( 𝐻 ‘ 𝑥 ) } ¬ 𝑧 𝑅 𝑦 ) ) |
10 |
1 2 3 4 5 6 7 8 9
|
bnj1523 |
⊢ ( ( 𝑅 FrSe 𝐴 ∧ 𝐻 Fn 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ( 𝐻 ‘ 𝑥 ) = ( 𝐺 ‘ 〈 𝑥 , ( 𝐻 ↾ pred ( 𝑥 , 𝐴 , 𝑅 ) ) 〉 ) ) → 𝐹 = 𝐻 ) |