Metamath Proof Explorer


Theorem bnj1522

Description: Well-founded recursion, part 3 of 3. The proof has been taken from Chapter 4 of Don Monk's notes on Set Theory. See http://euclid.colorado.edu/~monkd/setth.pdf . (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (New usage is discouraged.)

Ref Expression
Hypotheses bnj1522.1 𝐵 = { 𝑑 ∣ ( 𝑑𝐴 ∧ ∀ 𝑥𝑑 pred ( 𝑥 , 𝐴 , 𝑅 ) ⊆ 𝑑 ) }
bnj1522.2 𝑌 = ⟨ 𝑥 , ( 𝑓 ↾ pred ( 𝑥 , 𝐴 , 𝑅 ) ) ⟩
bnj1522.3 𝐶 = { 𝑓 ∣ ∃ 𝑑𝐵 ( 𝑓 Fn 𝑑 ∧ ∀ 𝑥𝑑 ( 𝑓𝑥 ) = ( 𝐺𝑌 ) ) }
bnj1522.4 𝐹 = 𝐶
Assertion bnj1522 ( ( 𝑅 FrSe 𝐴𝐻 Fn 𝐴 ∧ ∀ 𝑥𝐴 ( 𝐻𝑥 ) = ( 𝐺 ‘ ⟨ 𝑥 , ( 𝐻 ↾ pred ( 𝑥 , 𝐴 , 𝑅 ) ) ⟩ ) ) → 𝐹 = 𝐻 )

Proof

Step Hyp Ref Expression
1 bnj1522.1 𝐵 = { 𝑑 ∣ ( 𝑑𝐴 ∧ ∀ 𝑥𝑑 pred ( 𝑥 , 𝐴 , 𝑅 ) ⊆ 𝑑 ) }
2 bnj1522.2 𝑌 = ⟨ 𝑥 , ( 𝑓 ↾ pred ( 𝑥 , 𝐴 , 𝑅 ) ) ⟩
3 bnj1522.3 𝐶 = { 𝑓 ∣ ∃ 𝑑𝐵 ( 𝑓 Fn 𝑑 ∧ ∀ 𝑥𝑑 ( 𝑓𝑥 ) = ( 𝐺𝑌 ) ) }
4 bnj1522.4 𝐹 = 𝐶
5 biid ( ( 𝑅 FrSe 𝐴𝐻 Fn 𝐴 ∧ ∀ 𝑥𝐴 ( 𝐻𝑥 ) = ( 𝐺 ‘ ⟨ 𝑥 , ( 𝐻 ↾ pred ( 𝑥 , 𝐴 , 𝑅 ) ) ⟩ ) ) ↔ ( 𝑅 FrSe 𝐴𝐻 Fn 𝐴 ∧ ∀ 𝑥𝐴 ( 𝐻𝑥 ) = ( 𝐺 ‘ ⟨ 𝑥 , ( 𝐻 ↾ pred ( 𝑥 , 𝐴 , 𝑅 ) ) ⟩ ) ) )
6 biid ( ( ( 𝑅 FrSe 𝐴𝐻 Fn 𝐴 ∧ ∀ 𝑥𝐴 ( 𝐻𝑥 ) = ( 𝐺 ‘ ⟨ 𝑥 , ( 𝐻 ↾ pred ( 𝑥 , 𝐴 , 𝑅 ) ) ⟩ ) ) ∧ 𝐹𝐻 ) ↔ ( ( 𝑅 FrSe 𝐴𝐻 Fn 𝐴 ∧ ∀ 𝑥𝐴 ( 𝐻𝑥 ) = ( 𝐺 ‘ ⟨ 𝑥 , ( 𝐻 ↾ pred ( 𝑥 , 𝐴 , 𝑅 ) ) ⟩ ) ) ∧ 𝐹𝐻 ) )
7 biid ( ( ( ( 𝑅 FrSe 𝐴𝐻 Fn 𝐴 ∧ ∀ 𝑥𝐴 ( 𝐻𝑥 ) = ( 𝐺 ‘ ⟨ 𝑥 , ( 𝐻 ↾ pred ( 𝑥 , 𝐴 , 𝑅 ) ) ⟩ ) ) ∧ 𝐹𝐻 ) ∧ 𝑥𝐴 ∧ ( 𝐹𝑥 ) ≠ ( 𝐻𝑥 ) ) ↔ ( ( ( 𝑅 FrSe 𝐴𝐻 Fn 𝐴 ∧ ∀ 𝑥𝐴 ( 𝐻𝑥 ) = ( 𝐺 ‘ ⟨ 𝑥 , ( 𝐻 ↾ pred ( 𝑥 , 𝐴 , 𝑅 ) ) ⟩ ) ) ∧ 𝐹𝐻 ) ∧ 𝑥𝐴 ∧ ( 𝐹𝑥 ) ≠ ( 𝐻𝑥 ) ) )
8 eqid { 𝑥𝐴 ∣ ( 𝐹𝑥 ) ≠ ( 𝐻𝑥 ) } = { 𝑥𝐴 ∣ ( 𝐹𝑥 ) ≠ ( 𝐻𝑥 ) }
9 biid ( ( ( ( ( 𝑅 FrSe 𝐴𝐻 Fn 𝐴 ∧ ∀ 𝑥𝐴 ( 𝐻𝑥 ) = ( 𝐺 ‘ ⟨ 𝑥 , ( 𝐻 ↾ pred ( 𝑥 , 𝐴 , 𝑅 ) ) ⟩ ) ) ∧ 𝐹𝐻 ) ∧ 𝑥𝐴 ∧ ( 𝐹𝑥 ) ≠ ( 𝐻𝑥 ) ) ∧ 𝑦 ∈ { 𝑥𝐴 ∣ ( 𝐹𝑥 ) ≠ ( 𝐻𝑥 ) } ∧ ∀ 𝑧 ∈ { 𝑥𝐴 ∣ ( 𝐹𝑥 ) ≠ ( 𝐻𝑥 ) } ¬ 𝑧 𝑅 𝑦 ) ↔ ( ( ( ( 𝑅 FrSe 𝐴𝐻 Fn 𝐴 ∧ ∀ 𝑥𝐴 ( 𝐻𝑥 ) = ( 𝐺 ‘ ⟨ 𝑥 , ( 𝐻 ↾ pred ( 𝑥 , 𝐴 , 𝑅 ) ) ⟩ ) ) ∧ 𝐹𝐻 ) ∧ 𝑥𝐴 ∧ ( 𝐹𝑥 ) ≠ ( 𝐻𝑥 ) ) ∧ 𝑦 ∈ { 𝑥𝐴 ∣ ( 𝐹𝑥 ) ≠ ( 𝐻𝑥 ) } ∧ ∀ 𝑧 ∈ { 𝑥𝐴 ∣ ( 𝐹𝑥 ) ≠ ( 𝐻𝑥 ) } ¬ 𝑧 𝑅 𝑦 ) )
10 1 2 3 4 5 6 7 8 9 bnj1523 ( ( 𝑅 FrSe 𝐴𝐻 Fn 𝐴 ∧ ∀ 𝑥𝐴 ( 𝐻𝑥 ) = ( 𝐺 ‘ ⟨ 𝑥 , ( 𝐻 ↾ pred ( 𝑥 , 𝐴 , 𝑅 ) ) ⟩ ) ) → 𝐹 = 𝐻 )