Step |
Hyp |
Ref |
Expression |
1 |
|
bnj153.1 |
⊢ ( 𝜑 ↔ ( 𝑓 ‘ ∅ ) = pred ( 𝑥 , 𝐴 , 𝑅 ) ) |
2 |
|
bnj153.2 |
⊢ ( 𝜓 ↔ ∀ 𝑖 ∈ ω ( suc 𝑖 ∈ 𝑛 → ( 𝑓 ‘ suc 𝑖 ) = ∪ 𝑦 ∈ ( 𝑓 ‘ 𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) ) |
3 |
|
bnj153.3 |
⊢ 𝐷 = ( ω ∖ { ∅ } ) |
4 |
|
bnj153.4 |
⊢ ( 𝜃 ↔ ( ( 𝑅 FrSe 𝐴 ∧ 𝑥 ∈ 𝐴 ) → ∃! 𝑓 ( 𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓 ) ) ) |
5 |
|
bnj153.5 |
⊢ ( 𝜏 ↔ ∀ 𝑚 ∈ 𝐷 ( 𝑚 E 𝑛 → [ 𝑚 / 𝑛 ] 𝜃 ) ) |
6 |
|
biid |
⊢ ( ( ( 𝑅 FrSe 𝐴 ∧ 𝑥 ∈ 𝐴 ) → ( 𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓 ) ) ↔ ( ( 𝑅 FrSe 𝐴 ∧ 𝑥 ∈ 𝐴 ) → ( 𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓 ) ) ) |
7 |
|
biid |
⊢ ( [ 1o / 𝑛 ] 𝜑 ↔ [ 1o / 𝑛 ] 𝜑 ) |
8 |
1 7
|
bnj118 |
⊢ ( [ 1o / 𝑛 ] 𝜑 ↔ ( 𝑓 ‘ ∅ ) = pred ( 𝑥 , 𝐴 , 𝑅 ) ) |
9 |
8
|
bicomi |
⊢ ( ( 𝑓 ‘ ∅ ) = pred ( 𝑥 , 𝐴 , 𝑅 ) ↔ [ 1o / 𝑛 ] 𝜑 ) |
10 |
|
bnj105 |
⊢ 1o ∈ V |
11 |
2 10
|
bnj92 |
⊢ ( [ 1o / 𝑛 ] 𝜓 ↔ ∀ 𝑖 ∈ ω ( suc 𝑖 ∈ 1o → ( 𝑓 ‘ suc 𝑖 ) = ∪ 𝑦 ∈ ( 𝑓 ‘ 𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) ) |
12 |
11
|
bicomi |
⊢ ( ∀ 𝑖 ∈ ω ( suc 𝑖 ∈ 1o → ( 𝑓 ‘ suc 𝑖 ) = ∪ 𝑦 ∈ ( 𝑓 ‘ 𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) ↔ [ 1o / 𝑛 ] 𝜓 ) |
13 |
|
biid |
⊢ ( [ 1o / 𝑛 ] 𝜃 ↔ [ 1o / 𝑛 ] 𝜃 ) |
14 |
|
biid |
⊢ ( ( ( 𝑅 FrSe 𝐴 ∧ 𝑥 ∈ 𝐴 ) → ∃ 𝑓 ( 𝑓 Fn 1o ∧ ( 𝑓 ‘ ∅ ) = pred ( 𝑥 , 𝐴 , 𝑅 ) ∧ ∀ 𝑖 ∈ ω ( suc 𝑖 ∈ 1o → ( 𝑓 ‘ suc 𝑖 ) = ∪ 𝑦 ∈ ( 𝑓 ‘ 𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) ) ) ↔ ( ( 𝑅 FrSe 𝐴 ∧ 𝑥 ∈ 𝐴 ) → ∃ 𝑓 ( 𝑓 Fn 1o ∧ ( 𝑓 ‘ ∅ ) = pred ( 𝑥 , 𝐴 , 𝑅 ) ∧ ∀ 𝑖 ∈ ω ( suc 𝑖 ∈ 1o → ( 𝑓 ‘ suc 𝑖 ) = ∪ 𝑦 ∈ ( 𝑓 ‘ 𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) ) ) ) |
15 |
|
biid |
⊢ ( ( ( 𝑅 FrSe 𝐴 ∧ 𝑥 ∈ 𝐴 ) → ∃* 𝑓 ( 𝑓 Fn 1o ∧ ( 𝑓 ‘ ∅ ) = pred ( 𝑥 , 𝐴 , 𝑅 ) ∧ ∀ 𝑖 ∈ ω ( suc 𝑖 ∈ 1o → ( 𝑓 ‘ suc 𝑖 ) = ∪ 𝑦 ∈ ( 𝑓 ‘ 𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) ) ) ↔ ( ( 𝑅 FrSe 𝐴 ∧ 𝑥 ∈ 𝐴 ) → ∃* 𝑓 ( 𝑓 Fn 1o ∧ ( 𝑓 ‘ ∅ ) = pred ( 𝑥 , 𝐴 , 𝑅 ) ∧ ∀ 𝑖 ∈ ω ( suc 𝑖 ∈ 1o → ( 𝑓 ‘ suc 𝑖 ) = ∪ 𝑦 ∈ ( 𝑓 ‘ 𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) ) ) ) |
16 |
|
biid |
⊢ ( [ 1o / 𝑛 ] ( ( 𝑅 FrSe 𝐴 ∧ 𝑥 ∈ 𝐴 ) → ( 𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓 ) ) ↔ [ 1o / 𝑛 ] ( ( 𝑅 FrSe 𝐴 ∧ 𝑥 ∈ 𝐴 ) → ( 𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓 ) ) ) |
17 |
|
biid |
⊢ ( [ 1o / 𝑛 ] 𝜓 ↔ [ 1o / 𝑛 ] 𝜓 ) |
18 |
6 16 7 17
|
bnj121 |
⊢ ( [ 1o / 𝑛 ] ( ( 𝑅 FrSe 𝐴 ∧ 𝑥 ∈ 𝐴 ) → ( 𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓 ) ) ↔ ( ( 𝑅 FrSe 𝐴 ∧ 𝑥 ∈ 𝐴 ) → ( 𝑓 Fn 1o ∧ [ 1o / 𝑛 ] 𝜑 ∧ [ 1o / 𝑛 ] 𝜓 ) ) ) |
19 |
8
|
anbi2i |
⊢ ( ( 𝑓 Fn 1o ∧ [ 1o / 𝑛 ] 𝜑 ) ↔ ( 𝑓 Fn 1o ∧ ( 𝑓 ‘ ∅ ) = pred ( 𝑥 , 𝐴 , 𝑅 ) ) ) |
20 |
19 11
|
anbi12i |
⊢ ( ( ( 𝑓 Fn 1o ∧ [ 1o / 𝑛 ] 𝜑 ) ∧ [ 1o / 𝑛 ] 𝜓 ) ↔ ( ( 𝑓 Fn 1o ∧ ( 𝑓 ‘ ∅ ) = pred ( 𝑥 , 𝐴 , 𝑅 ) ) ∧ ∀ 𝑖 ∈ ω ( suc 𝑖 ∈ 1o → ( 𝑓 ‘ suc 𝑖 ) = ∪ 𝑦 ∈ ( 𝑓 ‘ 𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) ) ) |
21 |
|
df-3an |
⊢ ( ( 𝑓 Fn 1o ∧ [ 1o / 𝑛 ] 𝜑 ∧ [ 1o / 𝑛 ] 𝜓 ) ↔ ( ( 𝑓 Fn 1o ∧ [ 1o / 𝑛 ] 𝜑 ) ∧ [ 1o / 𝑛 ] 𝜓 ) ) |
22 |
|
df-3an |
⊢ ( ( 𝑓 Fn 1o ∧ ( 𝑓 ‘ ∅ ) = pred ( 𝑥 , 𝐴 , 𝑅 ) ∧ ∀ 𝑖 ∈ ω ( suc 𝑖 ∈ 1o → ( 𝑓 ‘ suc 𝑖 ) = ∪ 𝑦 ∈ ( 𝑓 ‘ 𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) ) ↔ ( ( 𝑓 Fn 1o ∧ ( 𝑓 ‘ ∅ ) = pred ( 𝑥 , 𝐴 , 𝑅 ) ) ∧ ∀ 𝑖 ∈ ω ( suc 𝑖 ∈ 1o → ( 𝑓 ‘ suc 𝑖 ) = ∪ 𝑦 ∈ ( 𝑓 ‘ 𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) ) ) |
23 |
20 21 22
|
3bitr4i |
⊢ ( ( 𝑓 Fn 1o ∧ [ 1o / 𝑛 ] 𝜑 ∧ [ 1o / 𝑛 ] 𝜓 ) ↔ ( 𝑓 Fn 1o ∧ ( 𝑓 ‘ ∅ ) = pred ( 𝑥 , 𝐴 , 𝑅 ) ∧ ∀ 𝑖 ∈ ω ( suc 𝑖 ∈ 1o → ( 𝑓 ‘ suc 𝑖 ) = ∪ 𝑦 ∈ ( 𝑓 ‘ 𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) ) ) |
24 |
23
|
imbi2i |
⊢ ( ( ( 𝑅 FrSe 𝐴 ∧ 𝑥 ∈ 𝐴 ) → ( 𝑓 Fn 1o ∧ [ 1o / 𝑛 ] 𝜑 ∧ [ 1o / 𝑛 ] 𝜓 ) ) ↔ ( ( 𝑅 FrSe 𝐴 ∧ 𝑥 ∈ 𝐴 ) → ( 𝑓 Fn 1o ∧ ( 𝑓 ‘ ∅ ) = pred ( 𝑥 , 𝐴 , 𝑅 ) ∧ ∀ 𝑖 ∈ ω ( suc 𝑖 ∈ 1o → ( 𝑓 ‘ suc 𝑖 ) = ∪ 𝑦 ∈ ( 𝑓 ‘ 𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) ) ) ) |
25 |
18 24
|
bitri |
⊢ ( [ 1o / 𝑛 ] ( ( 𝑅 FrSe 𝐴 ∧ 𝑥 ∈ 𝐴 ) → ( 𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓 ) ) ↔ ( ( 𝑅 FrSe 𝐴 ∧ 𝑥 ∈ 𝐴 ) → ( 𝑓 Fn 1o ∧ ( 𝑓 ‘ ∅ ) = pred ( 𝑥 , 𝐴 , 𝑅 ) ∧ ∀ 𝑖 ∈ ω ( suc 𝑖 ∈ 1o → ( 𝑓 ‘ suc 𝑖 ) = ∪ 𝑦 ∈ ( 𝑓 ‘ 𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) ) ) ) |
26 |
25
|
bicomi |
⊢ ( ( ( 𝑅 FrSe 𝐴 ∧ 𝑥 ∈ 𝐴 ) → ( 𝑓 Fn 1o ∧ ( 𝑓 ‘ ∅ ) = pred ( 𝑥 , 𝐴 , 𝑅 ) ∧ ∀ 𝑖 ∈ ω ( suc 𝑖 ∈ 1o → ( 𝑓 ‘ suc 𝑖 ) = ∪ 𝑦 ∈ ( 𝑓 ‘ 𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) ) ) ↔ [ 1o / 𝑛 ] ( ( 𝑅 FrSe 𝐴 ∧ 𝑥 ∈ 𝐴 ) → ( 𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓 ) ) ) |
27 |
|
eqid |
⊢ { 〈 ∅ , pred ( 𝑥 , 𝐴 , 𝑅 ) 〉 } = { 〈 ∅ , pred ( 𝑥 , 𝐴 , 𝑅 ) 〉 } |
28 |
|
biid |
⊢ ( [ { 〈 ∅ , pred ( 𝑥 , 𝐴 , 𝑅 ) 〉 } / 𝑓 ] ( 𝑓 ‘ ∅ ) = pred ( 𝑥 , 𝐴 , 𝑅 ) ↔ [ { 〈 ∅ , pred ( 𝑥 , 𝐴 , 𝑅 ) 〉 } / 𝑓 ] ( 𝑓 ‘ ∅ ) = pred ( 𝑥 , 𝐴 , 𝑅 ) ) |
29 |
|
biid |
⊢ ( [ { 〈 ∅ , pred ( 𝑥 , 𝐴 , 𝑅 ) 〉 } / 𝑓 ] ∀ 𝑖 ∈ ω ( suc 𝑖 ∈ 1o → ( 𝑓 ‘ suc 𝑖 ) = ∪ 𝑦 ∈ ( 𝑓 ‘ 𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) ↔ [ { 〈 ∅ , pred ( 𝑥 , 𝐴 , 𝑅 ) 〉 } / 𝑓 ] ∀ 𝑖 ∈ ω ( suc 𝑖 ∈ 1o → ( 𝑓 ‘ suc 𝑖 ) = ∪ 𝑦 ∈ ( 𝑓 ‘ 𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) ) |
30 |
26
|
sbcbii |
⊢ ( [ { 〈 ∅ , pred ( 𝑥 , 𝐴 , 𝑅 ) 〉 } / 𝑓 ] ( ( 𝑅 FrSe 𝐴 ∧ 𝑥 ∈ 𝐴 ) → ( 𝑓 Fn 1o ∧ ( 𝑓 ‘ ∅ ) = pred ( 𝑥 , 𝐴 , 𝑅 ) ∧ ∀ 𝑖 ∈ ω ( suc 𝑖 ∈ 1o → ( 𝑓 ‘ suc 𝑖 ) = ∪ 𝑦 ∈ ( 𝑓 ‘ 𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) ) ) ↔ [ { 〈 ∅ , pred ( 𝑥 , 𝐴 , 𝑅 ) 〉 } / 𝑓 ] [ 1o / 𝑛 ] ( ( 𝑅 FrSe 𝐴 ∧ 𝑥 ∈ 𝐴 ) → ( 𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓 ) ) ) |
31 |
|
biid |
⊢ ( [ { 〈 ∅ , pred ( 𝑥 , 𝐴 , 𝑅 ) 〉 } / 𝑓 ] [ 1o / 𝑛 ] 𝜑 ↔ [ { 〈 ∅ , pred ( 𝑥 , 𝐴 , 𝑅 ) 〉 } / 𝑓 ] [ 1o / 𝑛 ] 𝜑 ) |
32 |
|
biid |
⊢ ( [ { 〈 ∅ , pred ( 𝑥 , 𝐴 , 𝑅 ) 〉 } / 𝑓 ] [ 1o / 𝑛 ] 𝜓 ↔ [ { 〈 ∅ , pred ( 𝑥 , 𝐴 , 𝑅 ) 〉 } / 𝑓 ] [ 1o / 𝑛 ] 𝜓 ) |
33 |
|
biid |
⊢ ( [ { 〈 ∅ , pred ( 𝑥 , 𝐴 , 𝑅 ) 〉 } / 𝑓 ] [ 1o / 𝑛 ] ( ( 𝑅 FrSe 𝐴 ∧ 𝑥 ∈ 𝐴 ) → ( 𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓 ) ) ↔ [ { 〈 ∅ , pred ( 𝑥 , 𝐴 , 𝑅 ) 〉 } / 𝑓 ] [ 1o / 𝑛 ] ( ( 𝑅 FrSe 𝐴 ∧ 𝑥 ∈ 𝐴 ) → ( 𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓 ) ) ) |
34 |
27 31 32 33 18
|
bnj124 |
⊢ ( [ { 〈 ∅ , pred ( 𝑥 , 𝐴 , 𝑅 ) 〉 } / 𝑓 ] [ 1o / 𝑛 ] ( ( 𝑅 FrSe 𝐴 ∧ 𝑥 ∈ 𝐴 ) → ( 𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓 ) ) ↔ ( ( 𝑅 FrSe 𝐴 ∧ 𝑥 ∈ 𝐴 ) → ( { 〈 ∅ , pred ( 𝑥 , 𝐴 , 𝑅 ) 〉 } Fn 1o ∧ [ { 〈 ∅ , pred ( 𝑥 , 𝐴 , 𝑅 ) 〉 } / 𝑓 ] [ 1o / 𝑛 ] 𝜑 ∧ [ { 〈 ∅ , pred ( 𝑥 , 𝐴 , 𝑅 ) 〉 } / 𝑓 ] [ 1o / 𝑛 ] 𝜓 ) ) ) |
35 |
1 7 31 27
|
bnj125 |
⊢ ( [ { 〈 ∅ , pred ( 𝑥 , 𝐴 , 𝑅 ) 〉 } / 𝑓 ] [ 1o / 𝑛 ] 𝜑 ↔ ( { 〈 ∅ , pred ( 𝑥 , 𝐴 , 𝑅 ) 〉 } ‘ ∅ ) = pred ( 𝑥 , 𝐴 , 𝑅 ) ) |
36 |
35
|
anbi2i |
⊢ ( ( { 〈 ∅ , pred ( 𝑥 , 𝐴 , 𝑅 ) 〉 } Fn 1o ∧ [ { 〈 ∅ , pred ( 𝑥 , 𝐴 , 𝑅 ) 〉 } / 𝑓 ] [ 1o / 𝑛 ] 𝜑 ) ↔ ( { 〈 ∅ , pred ( 𝑥 , 𝐴 , 𝑅 ) 〉 } Fn 1o ∧ ( { 〈 ∅ , pred ( 𝑥 , 𝐴 , 𝑅 ) 〉 } ‘ ∅ ) = pred ( 𝑥 , 𝐴 , 𝑅 ) ) ) |
37 |
2 17 32 27
|
bnj126 |
⊢ ( [ { 〈 ∅ , pred ( 𝑥 , 𝐴 , 𝑅 ) 〉 } / 𝑓 ] [ 1o / 𝑛 ] 𝜓 ↔ ∀ 𝑖 ∈ ω ( suc 𝑖 ∈ 1o → ( { 〈 ∅ , pred ( 𝑥 , 𝐴 , 𝑅 ) 〉 } ‘ suc 𝑖 ) = ∪ 𝑦 ∈ ( { 〈 ∅ , pred ( 𝑥 , 𝐴 , 𝑅 ) 〉 } ‘ 𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) ) |
38 |
36 37
|
anbi12i |
⊢ ( ( ( { 〈 ∅ , pred ( 𝑥 , 𝐴 , 𝑅 ) 〉 } Fn 1o ∧ [ { 〈 ∅ , pred ( 𝑥 , 𝐴 , 𝑅 ) 〉 } / 𝑓 ] [ 1o / 𝑛 ] 𝜑 ) ∧ [ { 〈 ∅ , pred ( 𝑥 , 𝐴 , 𝑅 ) 〉 } / 𝑓 ] [ 1o / 𝑛 ] 𝜓 ) ↔ ( ( { 〈 ∅ , pred ( 𝑥 , 𝐴 , 𝑅 ) 〉 } Fn 1o ∧ ( { 〈 ∅ , pred ( 𝑥 , 𝐴 , 𝑅 ) 〉 } ‘ ∅ ) = pred ( 𝑥 , 𝐴 , 𝑅 ) ) ∧ ∀ 𝑖 ∈ ω ( suc 𝑖 ∈ 1o → ( { 〈 ∅ , pred ( 𝑥 , 𝐴 , 𝑅 ) 〉 } ‘ suc 𝑖 ) = ∪ 𝑦 ∈ ( { 〈 ∅ , pred ( 𝑥 , 𝐴 , 𝑅 ) 〉 } ‘ 𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) ) ) |
39 |
|
df-3an |
⊢ ( ( { 〈 ∅ , pred ( 𝑥 , 𝐴 , 𝑅 ) 〉 } Fn 1o ∧ [ { 〈 ∅ , pred ( 𝑥 , 𝐴 , 𝑅 ) 〉 } / 𝑓 ] [ 1o / 𝑛 ] 𝜑 ∧ [ { 〈 ∅ , pred ( 𝑥 , 𝐴 , 𝑅 ) 〉 } / 𝑓 ] [ 1o / 𝑛 ] 𝜓 ) ↔ ( ( { 〈 ∅ , pred ( 𝑥 , 𝐴 , 𝑅 ) 〉 } Fn 1o ∧ [ { 〈 ∅ , pred ( 𝑥 , 𝐴 , 𝑅 ) 〉 } / 𝑓 ] [ 1o / 𝑛 ] 𝜑 ) ∧ [ { 〈 ∅ , pred ( 𝑥 , 𝐴 , 𝑅 ) 〉 } / 𝑓 ] [ 1o / 𝑛 ] 𝜓 ) ) |
40 |
|
df-3an |
⊢ ( ( { 〈 ∅ , pred ( 𝑥 , 𝐴 , 𝑅 ) 〉 } Fn 1o ∧ ( { 〈 ∅ , pred ( 𝑥 , 𝐴 , 𝑅 ) 〉 } ‘ ∅ ) = pred ( 𝑥 , 𝐴 , 𝑅 ) ∧ ∀ 𝑖 ∈ ω ( suc 𝑖 ∈ 1o → ( { 〈 ∅ , pred ( 𝑥 , 𝐴 , 𝑅 ) 〉 } ‘ suc 𝑖 ) = ∪ 𝑦 ∈ ( { 〈 ∅ , pred ( 𝑥 , 𝐴 , 𝑅 ) 〉 } ‘ 𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) ) ↔ ( ( { 〈 ∅ , pred ( 𝑥 , 𝐴 , 𝑅 ) 〉 } Fn 1o ∧ ( { 〈 ∅ , pred ( 𝑥 , 𝐴 , 𝑅 ) 〉 } ‘ ∅ ) = pred ( 𝑥 , 𝐴 , 𝑅 ) ) ∧ ∀ 𝑖 ∈ ω ( suc 𝑖 ∈ 1o → ( { 〈 ∅ , pred ( 𝑥 , 𝐴 , 𝑅 ) 〉 } ‘ suc 𝑖 ) = ∪ 𝑦 ∈ ( { 〈 ∅ , pred ( 𝑥 , 𝐴 , 𝑅 ) 〉 } ‘ 𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) ) ) |
41 |
38 39 40
|
3bitr4i |
⊢ ( ( { 〈 ∅ , pred ( 𝑥 , 𝐴 , 𝑅 ) 〉 } Fn 1o ∧ [ { 〈 ∅ , pred ( 𝑥 , 𝐴 , 𝑅 ) 〉 } / 𝑓 ] [ 1o / 𝑛 ] 𝜑 ∧ [ { 〈 ∅ , pred ( 𝑥 , 𝐴 , 𝑅 ) 〉 } / 𝑓 ] [ 1o / 𝑛 ] 𝜓 ) ↔ ( { 〈 ∅ , pred ( 𝑥 , 𝐴 , 𝑅 ) 〉 } Fn 1o ∧ ( { 〈 ∅ , pred ( 𝑥 , 𝐴 , 𝑅 ) 〉 } ‘ ∅ ) = pred ( 𝑥 , 𝐴 , 𝑅 ) ∧ ∀ 𝑖 ∈ ω ( suc 𝑖 ∈ 1o → ( { 〈 ∅ , pred ( 𝑥 , 𝐴 , 𝑅 ) 〉 } ‘ suc 𝑖 ) = ∪ 𝑦 ∈ ( { 〈 ∅ , pred ( 𝑥 , 𝐴 , 𝑅 ) 〉 } ‘ 𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) ) ) |
42 |
41
|
imbi2i |
⊢ ( ( ( 𝑅 FrSe 𝐴 ∧ 𝑥 ∈ 𝐴 ) → ( { 〈 ∅ , pred ( 𝑥 , 𝐴 , 𝑅 ) 〉 } Fn 1o ∧ [ { 〈 ∅ , pred ( 𝑥 , 𝐴 , 𝑅 ) 〉 } / 𝑓 ] [ 1o / 𝑛 ] 𝜑 ∧ [ { 〈 ∅ , pred ( 𝑥 , 𝐴 , 𝑅 ) 〉 } / 𝑓 ] [ 1o / 𝑛 ] 𝜓 ) ) ↔ ( ( 𝑅 FrSe 𝐴 ∧ 𝑥 ∈ 𝐴 ) → ( { 〈 ∅ , pred ( 𝑥 , 𝐴 , 𝑅 ) 〉 } Fn 1o ∧ ( { 〈 ∅ , pred ( 𝑥 , 𝐴 , 𝑅 ) 〉 } ‘ ∅ ) = pred ( 𝑥 , 𝐴 , 𝑅 ) ∧ ∀ 𝑖 ∈ ω ( suc 𝑖 ∈ 1o → ( { 〈 ∅ , pred ( 𝑥 , 𝐴 , 𝑅 ) 〉 } ‘ suc 𝑖 ) = ∪ 𝑦 ∈ ( { 〈 ∅ , pred ( 𝑥 , 𝐴 , 𝑅 ) 〉 } ‘ 𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) ) ) ) |
43 |
34 42
|
bitri |
⊢ ( [ { 〈 ∅ , pred ( 𝑥 , 𝐴 , 𝑅 ) 〉 } / 𝑓 ] [ 1o / 𝑛 ] ( ( 𝑅 FrSe 𝐴 ∧ 𝑥 ∈ 𝐴 ) → ( 𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓 ) ) ↔ ( ( 𝑅 FrSe 𝐴 ∧ 𝑥 ∈ 𝐴 ) → ( { 〈 ∅ , pred ( 𝑥 , 𝐴 , 𝑅 ) 〉 } Fn 1o ∧ ( { 〈 ∅ , pred ( 𝑥 , 𝐴 , 𝑅 ) 〉 } ‘ ∅ ) = pred ( 𝑥 , 𝐴 , 𝑅 ) ∧ ∀ 𝑖 ∈ ω ( suc 𝑖 ∈ 1o → ( { 〈 ∅ , pred ( 𝑥 , 𝐴 , 𝑅 ) 〉 } ‘ suc 𝑖 ) = ∪ 𝑦 ∈ ( { 〈 ∅ , pred ( 𝑥 , 𝐴 , 𝑅 ) 〉 } ‘ 𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) ) ) ) |
44 |
30 43
|
bitr2i |
⊢ ( ( ( 𝑅 FrSe 𝐴 ∧ 𝑥 ∈ 𝐴 ) → ( { 〈 ∅ , pred ( 𝑥 , 𝐴 , 𝑅 ) 〉 } Fn 1o ∧ ( { 〈 ∅ , pred ( 𝑥 , 𝐴 , 𝑅 ) 〉 } ‘ ∅ ) = pred ( 𝑥 , 𝐴 , 𝑅 ) ∧ ∀ 𝑖 ∈ ω ( suc 𝑖 ∈ 1o → ( { 〈 ∅ , pred ( 𝑥 , 𝐴 , 𝑅 ) 〉 } ‘ suc 𝑖 ) = ∪ 𝑦 ∈ ( { 〈 ∅ , pred ( 𝑥 , 𝐴 , 𝑅 ) 〉 } ‘ 𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) ) ) ↔ [ { 〈 ∅ , pred ( 𝑥 , 𝐴 , 𝑅 ) 〉 } / 𝑓 ] ( ( 𝑅 FrSe 𝐴 ∧ 𝑥 ∈ 𝐴 ) → ( 𝑓 Fn 1o ∧ ( 𝑓 ‘ ∅ ) = pred ( 𝑥 , 𝐴 , 𝑅 ) ∧ ∀ 𝑖 ∈ ω ( suc 𝑖 ∈ 1o → ( 𝑓 ‘ suc 𝑖 ) = ∪ 𝑦 ∈ ( 𝑓 ‘ 𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) ) ) ) |
45 |
|
biid |
⊢ ( ( 𝑓 Fn 1o ∧ ( 𝑓 ‘ ∅ ) = pred ( 𝑥 , 𝐴 , 𝑅 ) ∧ ∀ 𝑖 ∈ ω ( suc 𝑖 ∈ 1o → ( 𝑓 ‘ suc 𝑖 ) = ∪ 𝑦 ∈ ( 𝑓 ‘ 𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) ) ↔ ( 𝑓 Fn 1o ∧ ( 𝑓 ‘ ∅ ) = pred ( 𝑥 , 𝐴 , 𝑅 ) ∧ ∀ 𝑖 ∈ ω ( suc 𝑖 ∈ 1o → ( 𝑓 ‘ suc 𝑖 ) = ∪ 𝑦 ∈ ( 𝑓 ‘ 𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) ) ) |
46 |
|
biid |
⊢ ( ( 𝑓 Fn 1o ∧ [ 1o / 𝑛 ] 𝜑 ∧ [ 1o / 𝑛 ] 𝜓 ) ↔ ( 𝑓 Fn 1o ∧ [ 1o / 𝑛 ] 𝜑 ∧ [ 1o / 𝑛 ] 𝜓 ) ) |
47 |
|
biid |
⊢ ( [ 𝑔 / 𝑓 ] ( 𝑓 Fn 1o ∧ [ 1o / 𝑛 ] 𝜑 ∧ [ 1o / 𝑛 ] 𝜓 ) ↔ [ 𝑔 / 𝑓 ] ( 𝑓 Fn 1o ∧ [ 1o / 𝑛 ] 𝜑 ∧ [ 1o / 𝑛 ] 𝜓 ) ) |
48 |
|
biid |
⊢ ( [ 𝑔 / 𝑓 ] [ 1o / 𝑛 ] 𝜑 ↔ [ 𝑔 / 𝑓 ] [ 1o / 𝑛 ] 𝜑 ) |
49 |
|
biid |
⊢ ( [ 𝑔 / 𝑓 ] [ 1o / 𝑛 ] 𝜓 ↔ [ 𝑔 / 𝑓 ] [ 1o / 𝑛 ] 𝜓 ) |
50 |
46 47 48 49
|
bnj156 |
⊢ ( [ 𝑔 / 𝑓 ] ( 𝑓 Fn 1o ∧ [ 1o / 𝑛 ] 𝜑 ∧ [ 1o / 𝑛 ] 𝜓 ) ↔ ( 𝑔 Fn 1o ∧ [ 𝑔 / 𝑓 ] [ 1o / 𝑛 ] 𝜑 ∧ [ 𝑔 / 𝑓 ] [ 1o / 𝑛 ] 𝜓 ) ) |
51 |
48 8
|
bnj154 |
⊢ ( [ 𝑔 / 𝑓 ] [ 1o / 𝑛 ] 𝜑 ↔ ( 𝑔 ‘ ∅ ) = pred ( 𝑥 , 𝐴 , 𝑅 ) ) |
52 |
51
|
anbi2i |
⊢ ( ( 𝑔 Fn 1o ∧ [ 𝑔 / 𝑓 ] [ 1o / 𝑛 ] 𝜑 ) ↔ ( 𝑔 Fn 1o ∧ ( 𝑔 ‘ ∅ ) = pred ( 𝑥 , 𝐴 , 𝑅 ) ) ) |
53 |
17 11
|
bitri |
⊢ ( [ 1o / 𝑛 ] 𝜓 ↔ ∀ 𝑖 ∈ ω ( suc 𝑖 ∈ 1o → ( 𝑓 ‘ suc 𝑖 ) = ∪ 𝑦 ∈ ( 𝑓 ‘ 𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) ) |
54 |
49 53
|
bnj155 |
⊢ ( [ 𝑔 / 𝑓 ] [ 1o / 𝑛 ] 𝜓 ↔ ∀ 𝑖 ∈ ω ( suc 𝑖 ∈ 1o → ( 𝑔 ‘ suc 𝑖 ) = ∪ 𝑦 ∈ ( 𝑔 ‘ 𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) ) |
55 |
52 54
|
anbi12i |
⊢ ( ( ( 𝑔 Fn 1o ∧ [ 𝑔 / 𝑓 ] [ 1o / 𝑛 ] 𝜑 ) ∧ [ 𝑔 / 𝑓 ] [ 1o / 𝑛 ] 𝜓 ) ↔ ( ( 𝑔 Fn 1o ∧ ( 𝑔 ‘ ∅ ) = pred ( 𝑥 , 𝐴 , 𝑅 ) ) ∧ ∀ 𝑖 ∈ ω ( suc 𝑖 ∈ 1o → ( 𝑔 ‘ suc 𝑖 ) = ∪ 𝑦 ∈ ( 𝑔 ‘ 𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) ) ) |
56 |
|
df-3an |
⊢ ( ( 𝑔 Fn 1o ∧ [ 𝑔 / 𝑓 ] [ 1o / 𝑛 ] 𝜑 ∧ [ 𝑔 / 𝑓 ] [ 1o / 𝑛 ] 𝜓 ) ↔ ( ( 𝑔 Fn 1o ∧ [ 𝑔 / 𝑓 ] [ 1o / 𝑛 ] 𝜑 ) ∧ [ 𝑔 / 𝑓 ] [ 1o / 𝑛 ] 𝜓 ) ) |
57 |
|
df-3an |
⊢ ( ( 𝑔 Fn 1o ∧ ( 𝑔 ‘ ∅ ) = pred ( 𝑥 , 𝐴 , 𝑅 ) ∧ ∀ 𝑖 ∈ ω ( suc 𝑖 ∈ 1o → ( 𝑔 ‘ suc 𝑖 ) = ∪ 𝑦 ∈ ( 𝑔 ‘ 𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) ) ↔ ( ( 𝑔 Fn 1o ∧ ( 𝑔 ‘ ∅ ) = pred ( 𝑥 , 𝐴 , 𝑅 ) ) ∧ ∀ 𝑖 ∈ ω ( suc 𝑖 ∈ 1o → ( 𝑔 ‘ suc 𝑖 ) = ∪ 𝑦 ∈ ( 𝑔 ‘ 𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) ) ) |
58 |
55 56 57
|
3bitr4i |
⊢ ( ( 𝑔 Fn 1o ∧ [ 𝑔 / 𝑓 ] [ 1o / 𝑛 ] 𝜑 ∧ [ 𝑔 / 𝑓 ] [ 1o / 𝑛 ] 𝜓 ) ↔ ( 𝑔 Fn 1o ∧ ( 𝑔 ‘ ∅ ) = pred ( 𝑥 , 𝐴 , 𝑅 ) ∧ ∀ 𝑖 ∈ ω ( suc 𝑖 ∈ 1o → ( 𝑔 ‘ suc 𝑖 ) = ∪ 𝑦 ∈ ( 𝑔 ‘ 𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) ) ) |
59 |
50 58
|
bitri |
⊢ ( [ 𝑔 / 𝑓 ] ( 𝑓 Fn 1o ∧ [ 1o / 𝑛 ] 𝜑 ∧ [ 1o / 𝑛 ] 𝜓 ) ↔ ( 𝑔 Fn 1o ∧ ( 𝑔 ‘ ∅ ) = pred ( 𝑥 , 𝐴 , 𝑅 ) ∧ ∀ 𝑖 ∈ ω ( suc 𝑖 ∈ 1o → ( 𝑔 ‘ suc 𝑖 ) = ∪ 𝑦 ∈ ( 𝑔 ‘ 𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) ) ) |
60 |
23
|
sbcbii |
⊢ ( [ 𝑔 / 𝑓 ] ( 𝑓 Fn 1o ∧ [ 1o / 𝑛 ] 𝜑 ∧ [ 1o / 𝑛 ] 𝜓 ) ↔ [ 𝑔 / 𝑓 ] ( 𝑓 Fn 1o ∧ ( 𝑓 ‘ ∅ ) = pred ( 𝑥 , 𝐴 , 𝑅 ) ∧ ∀ 𝑖 ∈ ω ( suc 𝑖 ∈ 1o → ( 𝑓 ‘ suc 𝑖 ) = ∪ 𝑦 ∈ ( 𝑓 ‘ 𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) ) ) |
61 |
59 60
|
bitr3i |
⊢ ( ( 𝑔 Fn 1o ∧ ( 𝑔 ‘ ∅ ) = pred ( 𝑥 , 𝐴 , 𝑅 ) ∧ ∀ 𝑖 ∈ ω ( suc 𝑖 ∈ 1o → ( 𝑔 ‘ suc 𝑖 ) = ∪ 𝑦 ∈ ( 𝑔 ‘ 𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) ) ↔ [ 𝑔 / 𝑓 ] ( 𝑓 Fn 1o ∧ ( 𝑓 ‘ ∅ ) = pred ( 𝑥 , 𝐴 , 𝑅 ) ∧ ∀ 𝑖 ∈ ω ( suc 𝑖 ∈ 1o → ( 𝑓 ‘ suc 𝑖 ) = ∪ 𝑦 ∈ ( 𝑓 ‘ 𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) ) ) |
62 |
|
biid |
⊢ ( [ 𝑔 / 𝑓 ] ( 𝑓 ‘ ∅ ) = pred ( 𝑥 , 𝐴 , 𝑅 ) ↔ [ 𝑔 / 𝑓 ] ( 𝑓 ‘ ∅ ) = pred ( 𝑥 , 𝐴 , 𝑅 ) ) |
63 |
|
biid |
⊢ ( [ 𝑔 / 𝑓 ] ∀ 𝑖 ∈ ω ( suc 𝑖 ∈ 1o → ( 𝑓 ‘ suc 𝑖 ) = ∪ 𝑦 ∈ ( 𝑓 ‘ 𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) ↔ [ 𝑔 / 𝑓 ] ∀ 𝑖 ∈ ω ( suc 𝑖 ∈ 1o → ( 𝑓 ‘ suc 𝑖 ) = ∪ 𝑦 ∈ ( 𝑓 ‘ 𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) ) |
64 |
1 2 3 4 5 6 9 12 13 14 15 26 27 28 29 44 45 61 62 63
|
bnj151 |
⊢ ( 𝑛 = 1o → ( ( 𝑛 ∈ 𝐷 ∧ 𝜏 ) → 𝜃 ) ) |