Metamath Proof Explorer


Theorem bnj154

Description: Technical lemma for bnj153 . This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (New usage is discouraged.)

Ref Expression
Hypotheses bnj154.1 ( 𝜑1[ 𝑔 / 𝑓 ] 𝜑′ )
bnj154.2 ( 𝜑′ ↔ ( 𝑓 ‘ ∅ ) = pred ( 𝑥 , 𝐴 , 𝑅 ) )
Assertion bnj154 ( 𝜑1 ↔ ( 𝑔 ‘ ∅ ) = pred ( 𝑥 , 𝐴 , 𝑅 ) )

Proof

Step Hyp Ref Expression
1 bnj154.1 ( 𝜑1[ 𝑔 / 𝑓 ] 𝜑′ )
2 bnj154.2 ( 𝜑′ ↔ ( 𝑓 ‘ ∅ ) = pred ( 𝑥 , 𝐴 , 𝑅 ) )
3 2 sbcbii ( [ 𝑔 / 𝑓 ] 𝜑′[ 𝑔 / 𝑓 ] ( 𝑓 ‘ ∅ ) = pred ( 𝑥 , 𝐴 , 𝑅 ) )
4 vex 𝑔 ∈ V
5 fveq1 ( 𝑓 = 𝑔 → ( 𝑓 ‘ ∅ ) = ( 𝑔 ‘ ∅ ) )
6 5 eqeq1d ( 𝑓 = 𝑔 → ( ( 𝑓 ‘ ∅ ) = pred ( 𝑥 , 𝐴 , 𝑅 ) ↔ ( 𝑔 ‘ ∅ ) = pred ( 𝑥 , 𝐴 , 𝑅 ) ) )
7 4 6 sbcie ( [ 𝑔 / 𝑓 ] ( 𝑓 ‘ ∅ ) = pred ( 𝑥 , 𝐴 , 𝑅 ) ↔ ( 𝑔 ‘ ∅ ) = pred ( 𝑥 , 𝐴 , 𝑅 ) )
8 1 3 7 3bitri ( 𝜑1 ↔ ( 𝑔 ‘ ∅ ) = pred ( 𝑥 , 𝐴 , 𝑅 ) )