Metamath Proof Explorer


Theorem bnj155

Description: Technical lemma for bnj153 . This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (New usage is discouraged.)

Ref Expression
Hypotheses bnj155.1 ( 𝜓1[ 𝑔 / 𝑓 ] 𝜓′ )
bnj155.2 ( 𝜓′ ↔ ∀ 𝑖 ∈ ω ( suc 𝑖 ∈ 1o → ( 𝑓 ‘ suc 𝑖 ) = 𝑦 ∈ ( 𝑓𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) )
Assertion bnj155 ( 𝜓1 ↔ ∀ 𝑖 ∈ ω ( suc 𝑖 ∈ 1o → ( 𝑔 ‘ suc 𝑖 ) = 𝑦 ∈ ( 𝑔𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) )

Proof

Step Hyp Ref Expression
1 bnj155.1 ( 𝜓1[ 𝑔 / 𝑓 ] 𝜓′ )
2 bnj155.2 ( 𝜓′ ↔ ∀ 𝑖 ∈ ω ( suc 𝑖 ∈ 1o → ( 𝑓 ‘ suc 𝑖 ) = 𝑦 ∈ ( 𝑓𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) )
3 2 sbcbii ( [ 𝑔 / 𝑓 ] 𝜓′[ 𝑔 / 𝑓 ]𝑖 ∈ ω ( suc 𝑖 ∈ 1o → ( 𝑓 ‘ suc 𝑖 ) = 𝑦 ∈ ( 𝑓𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) )
4 vex 𝑔 ∈ V
5 fveq1 ( 𝑓 = 𝑔 → ( 𝑓 ‘ suc 𝑖 ) = ( 𝑔 ‘ suc 𝑖 ) )
6 fveq1 ( 𝑓 = 𝑔 → ( 𝑓𝑖 ) = ( 𝑔𝑖 ) )
7 6 iuneq1d ( 𝑓 = 𝑔 𝑦 ∈ ( 𝑓𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) = 𝑦 ∈ ( 𝑔𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) )
8 5 7 eqeq12d ( 𝑓 = 𝑔 → ( ( 𝑓 ‘ suc 𝑖 ) = 𝑦 ∈ ( 𝑓𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ↔ ( 𝑔 ‘ suc 𝑖 ) = 𝑦 ∈ ( 𝑔𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) )
9 8 imbi2d ( 𝑓 = 𝑔 → ( ( suc 𝑖 ∈ 1o → ( 𝑓 ‘ suc 𝑖 ) = 𝑦 ∈ ( 𝑓𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) ↔ ( suc 𝑖 ∈ 1o → ( 𝑔 ‘ suc 𝑖 ) = 𝑦 ∈ ( 𝑔𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) ) )
10 9 ralbidv ( 𝑓 = 𝑔 → ( ∀ 𝑖 ∈ ω ( suc 𝑖 ∈ 1o → ( 𝑓 ‘ suc 𝑖 ) = 𝑦 ∈ ( 𝑓𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) ↔ ∀ 𝑖 ∈ ω ( suc 𝑖 ∈ 1o → ( 𝑔 ‘ suc 𝑖 ) = 𝑦 ∈ ( 𝑔𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) ) )
11 4 10 sbcie ( [ 𝑔 / 𝑓 ]𝑖 ∈ ω ( suc 𝑖 ∈ 1o → ( 𝑓 ‘ suc 𝑖 ) = 𝑦 ∈ ( 𝑓𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) ↔ ∀ 𝑖 ∈ ω ( suc 𝑖 ∈ 1o → ( 𝑔 ‘ suc 𝑖 ) = 𝑦 ∈ ( 𝑔𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) )
12 1 3 11 3bitri ( 𝜓1 ↔ ∀ 𝑖 ∈ ω ( suc 𝑖 ∈ 1o → ( 𝑔 ‘ suc 𝑖 ) = 𝑦 ∈ ( 𝑔𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) )