Metamath Proof Explorer


Theorem bnj158

Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (New usage is discouraged.)

Ref Expression
Hypothesis bnj158.1 𝐷 = ( ω ∖ { ∅ } )
Assertion bnj158 ( 𝑚𝐷 → ∃ 𝑝 ∈ ω 𝑚 = suc 𝑝 )

Proof

Step Hyp Ref Expression
1 bnj158.1 𝐷 = ( ω ∖ { ∅ } )
2 1 eleq2i ( 𝑚𝐷𝑚 ∈ ( ω ∖ { ∅ } ) )
3 eldifsn ( 𝑚 ∈ ( ω ∖ { ∅ } ) ↔ ( 𝑚 ∈ ω ∧ 𝑚 ≠ ∅ ) )
4 2 3 bitri ( 𝑚𝐷 ↔ ( 𝑚 ∈ ω ∧ 𝑚 ≠ ∅ ) )
5 nnsuc ( ( 𝑚 ∈ ω ∧ 𝑚 ≠ ∅ ) → ∃ 𝑝 ∈ ω 𝑚 = suc 𝑝 )
6 4 5 sylbi ( 𝑚𝐷 → ∃ 𝑝 ∈ ω 𝑚 = suc 𝑝 )